• Title/Summary/Keyword: Single damage

Search Result 1,144, Processing Time 0.03 seconds

A new damage index for seismic fragility analysis of reinforced concrete columns

  • Kang, Jun Won;Lee, Jeeho
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.875-890
    • /
    • 2016
  • A new structural damage index for seismic fragility analysis of reinforced concrete columns is developed based on a local tensile damage variable of the Lee and Fenves plastic-damage model. The proposed damage index is formulated from the nonlinear regression of experimental column test data. In contrast to the response-based damage index, the proposed damage index is well-defined in the form of a single monotonically-increasing function of the volume weighted average of local damage distribution, and provides the necessary computability and objectivity. It is shown that the present damage index can be appropriately zoned to be used in seismic fragility analysis. An application example in the computational seismic fragility evaluation of reinforced concrete columns validates the effectiveness of the proposed damage index.

Effects of viscous damping models on a single-layer latticed dome during earthquakes

  • Zhang, Huidong;Wang, Jinpeng;Zhang, Xiaoshuai;Liu, Guoping
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.455-464
    • /
    • 2017
  • Rayleigh damping model is recommended in the recently developed Performance-Based Earthquake Engineering (PBEE) methodology, but this methodology does not provide sufficient information due to the complexity of the damping mechanism. Furthermore, each Rayleigh-type damping model may have its individual limitations. In this study, Rayleigh-type damping models that are used widely in engineering practice are discussed. The seismic performance of a large-span single-layer latticed dome subjected to earthquake ground motions is investigated using different Rayleigh damping models. Herein a simulation technique is developed considering low cycle fatigue (LCF) in steel material. In the simulation technique, Ramberg-Osgood steel material model with the low cycle fatigue effect is used to simulate the non-uniformly distributed material damping and low cycle fatigue damage in the structure. Subsequently, the damping forces of the structure generated by different damping models are compared and discussed; the effects of the damping ratio and roof load on the damping forces are evaluated. Finally, the low cycle fatigue damage values in sections of members are given using these damping models. Through a comparative analysis, an appropriate Rayleigh-type damping model used for a large span single-layer latticed dome subjected to earthquake ground motions is determined in terms of the existing damping models.

A model for damage analysis of concrete

  • Cao, Vui V.;Ronagh, Hamid R.
    • Advances in concrete construction
    • /
    • v.1 no.2
    • /
    • pp.187-200
    • /
    • 2013
  • The damage level in structures (global scale), elements (intermediate scale) and sections (local scale) can be evaluated using a single parameter called the "Damage Index". Part of the damage attributed to the local scale relates to the damage sustained by the materials of which the section is made. This study investigates the damage of concrete subjected to monotonic compressive loading using four different damage models - one proposed here for the first time and three other well-known models. The analytical results show that the proposed model is promising yet simple and effective for evaluating the damage of concrete. The proposed damage model of concrete with its promising characteristics indicated, appears to be a useful tool in the damage assessment of structures made of concrete.

Protective Effect of Green Tea Extract and EGCG on Ethanol-induced Cytotoxicity and DNA Damage in NIH/3T3 and HepG2 Cells

  • Kim, Nam Yee;Kim, Hyun Pyo;Heo, Moon Young
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • In the present study, our aim was to determine whether green tea extract (GTE) and its major constituent, epigallocatechin-3-gallate (EGCG) have a protective effect on ethanol-induced cytotoxicity and DNA damage in NIH/3T3 and HepG2 cells. The cell viability and DNA single strand breaks were examined by MTT assay and alkaline single cell gel electrophoresis (Comet assay), respectively. Ethanol decreased the cell viability and also increased DNA single strand breaks in a concentration-dependent manner. On the other hand, GTE showed the protective effect of cytotoxicity and DNA damage induced by ethanol in both cell lines. GTE and EGCG, were found to possess the anti-oxidative and anti-genotoxic activities by evaluation with DPPH test, LDL oxidation assay, oxidative DNA damage assay and 8OH-2'dG generation test. These results were also verified by the experimental results demonstrating the lower cytotoxicity and genotoxicity of commercial green tea liqueur compared to pure ethanol in same concentration. Thus it is concluded that the supplementation of GTE or EGCG may mitigate the ethanol-induced cytotoxicity and DNA damage.

Damage Detection in Highway Bridges Via Changes in Modal Parameters (진동특성치의 변화를 통한 교량의 손상발견)

  • Kim, Jeong-Tae;Ryu, Yeon-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.87-94
    • /
    • 1995
  • In highway bridges robust damage detection exercises are mandatory to secure the safety of the structures from hostile environmental conditions such as fatigue earthquake, wind, and corrosion. This paper presents a damage detection practice in a full-scale highway bridge by utilizing modal response parameters of as-built and damaged states of the structure. first the test structure is described and modal testing procedures are outlined. Next, a damage detection model which yields information on the location of damage directly from changes in mode shapes is outlined. Finally, the damage detection model is implemented to predict the location of damage in the ten structure. From the results, it was found that the damage detection model accurately locates damage in the test structures for which modal parameters of only a single mode are available for pre-damage (as-built) and post-damage stages.

  • PDF

DNA Single Strand Breaks of Perchloroethylene and Its Bio-degradation Products by Single Cell Gel Electrophoresis Assay in Mammalian Cell System

  • Jeon, Hee-Kyoung;Kim, Young-Seok;Sarma, Sailendra Nlath;Kim, Youn-Jung;Sang, Byoung-In;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.99-105
    • /
    • 2005
  • Perchloroethylene (tetrachloroethylene, PCE), a dry cleaning and degreasing solvent, can enter ground-water through accidental leak or spills. PCE can be degraded to trichloroethylene (TCE), 1, 1-dichloroethylene (DCE) and vinyl chloride (VC) as potential bio-product. These compounds have been reported that they can cause clinical diseases and cytotoxicity. However, only a little genotoxic information of these compounds has been known. In this study, we investigated DNA single strand breaks of PCE, TCE, DCE and VC by single cell gel electrophoresis assay, (comet assay) which is a sensitive, reliable and rapid method for DNA single strand breaks with mouse lymphoma L5178Y cells. From these results, $37.5\;{\mu}g/ml$ of PCE, $189\;{\mu}g/ml$ of TCE and $56.4\;{\mu}g/ml$ of DCE were revealed significant DNA damages in the absence of S-9 metabolic activation system meaning direct-acting mutagen. And in the presence of S-9 metabolic activation system, $41.5\;{\mu}g/ml$ of PCE, $328.7\;{\mu}g/ml$ of TCE and $949\;{\mu}g/ml$ of DCE were induced significant DNA damage. In the case of VC, it was revealed a significant DNA damage in the presence of S-9 metabolic activation system. Therefore, we suggest that chloroethylene compounds (PCE, TCE, DCE and VC) may be induced the DNA damage in a mammalian cell.

In-situ HRTEM Studies of Alumina-Aluminum Solid-Liquid Interfaces

  • Oh, Sang-Ho;Scheu, Christina;Ruhle, Manfred
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.19-24
    • /
    • 2006
  • The alumina-aluminum solid-liquid interfaces were directly observed at atomic scale by heating the alumina single crystal in high-voltage electron microscope (HVEM) owing to the electron beam damage processes, Atomic ordering in the first several layers of the liquid was clearly resolved adjacent to the alumina surface and its relevance to the single crystal growth was examined with the real-time observations.

Crack location in beams by data fusion of fractal dimension features of laser-measured operating deflection shapes

  • Bai, R.B.;Song, X.G.;Radzienski, M.;Cao, M.S.;Ostachowicz, W.;Wang, S.S.
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.975-991
    • /
    • 2014
  • The objective of this study is to develop a reliable method for locating cracks in a beam using data fusion of fractal dimension features of operating deflection shapes. The Katz's fractal dimension curve of an operating deflection shape is used as a basic feature of damage. Like most available damage features, the Katz's fractal dimension curve has a notable limitation in characterizing damage: it is unresponsive to damage near the nodes of structural deformation responses, e.g., operating deflection shapes. To address this limitation, data fusion of Katz's fractal dimension curves of various operating deflection shapes is used to create a sophisticated fractal damage feature, the 'overall Katz's fractal dimension curve'. This overall Katz's fractal dimension curve has the distinctive capability of overcoming the nodal effect of operating deflection shapes so that it maximizes responsiveness to damage and reliability of damage localization. The method is applied to the detection of damage in numerical and experimental cases of cantilever beams with single/multiple cracks, with high-resolution operating deflection shapes acquired by a scanning laser vibrometer. Results show that the overall Katz's fractal dimension curve can locate single/multiple cracks in beams with significantly improved accuracy and reliability in comparison to the existing method. Data fusion of fractal dimension features of operating deflection shapes provides a viable strategy for identifying damage in beam-type structures, with robustness against node effects.

Comparison of Nondestructive Damage Sensitivity of Single Fiber/Epoxy Composites Using Ceramic PZT and Polymeric PVDF Sensors By Micromechanical Technique and Acoustic Emission (Micromechanical 시험법과 AE를 이용한 세라믹 PZT 및 고분자 PVDF 센서에 따른 단섬유 강화 에폭시 복합재료의 비파괴 손상감지능 비교)

  • Jung Jin-Kyu;Kim Dae-Sik;Park Joung-Man;Yoon Dong-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.135-138
    • /
    • 2004
  • Conventional piezoelectric lead-zirconate-titanate (PZT) senor has high sensitivity, but it is very brittle. Recently polymer films such as polyvinylidene fluoride (PVDF) and poly(vinylidene fluoride­trifluoroethylene) (P(VDF-TrFE)) copolymer have been used as a sensor. The advantages of polymer sensor are the flexibility and mechanical toughness. Simple process and possible several shapes are also additional advantages. Polymer sensor can be directly embedded in a structure. In this study, nondestructive damage sensitivity of single basalt fiber/epoxy composites was investigated with sensor type and thermal damage using AE and oscilloscope. And AE waveform for epoxy matrix with various damage types was compared to each other. The damage sensitivity of two polymer sensors was rather lower than that of PZT sensor. The damage sensitivity of PVDF sensor did not decrease until thermal damage temperature at $80^{\circ}C$ and they decreased significantly at $110^{\circ}C$ However, the damage sensitivity of P(VDF-TrFE) sensor at $110^{\circ}C$ was almost same in no damage sensor. For both top and side impacts, the difference in arrival time increased with increasing internal and surface damage density of epoxy matrix.

  • PDF

A Study on Analysis for Bulk Forming of a Single Crystal Milli-Product (단결정 밀리 부품의 입체성형 해석에 관한 연구)

  • Lee Y. S.;Kim Y. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.245-249
    • /
    • 2001
  • This paper is concerned with numerical analyses for bulk forming of a single crystal milli-product, whose typical size ranges from a few hundreds ${\mu}m$ to a few mm. The numerical formulation invoked in this paper combines the crystal plasticity theory considering texture development and the ductile damage mechanics for growth of micro voids, since orientation development and growth of micro voids become the primary factors for bulk forming of milli-size products. As applications, milli-extrusion of a single crystal round bar and milli-rolling of a single crystal plate are simulated and the results are discussed in detail.

  • PDF