• Title/Summary/Keyword: Single cylinder engine

Search Result 312, Processing Time 0.02 seconds

Quantitative Measurement of Soot concentration by Two-Wavelength Correction of Laser-Induced Incandescence Signals (2파장 보정 Laser-Induced Incandescence 법을 이용한 매연 농도 측정)

  • 정종수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.54-65
    • /
    • 1997
  • To quantify the LII signals from soot particle of flames in diesel engine cylinder, a new method has been proposed for correcting LII signal attenuated by soot particles between the measuring point and the detector. It has been verified by an experiment on a laminar jet ethylene-air diffusion flame. Being proportional to the attenuation, the ratio of LII signal at two different detection wavelengths can be used to correct the measured LIIsignal and obtain the unattenuated LII signal, from which the soot volume fraction in the flame can be estimated. Both the 1064-nm and frequency-doubled 532-nm beams from the Nd : YAG laser are used. Single-shot, one-dimensional(1-D) line images are recorded on the intensified CCD camera, with the rectangular-profile laser beam using 1-mm-diameter pinhole. Two broadband optical interference filters having the center wavelengths of 647 nm and 400 nm respectively and a bandwidth of 10 nm are used. This two-wavelength correction has been applied to the ethylene-air coannular laminar diffusion flame, previously studied on soot formation by the laser extinction method in this laboratory. The results by the LII measurement technique and the conventional laser extinction method at the height of 40 nm above the jet exit agreed well with each other except around outside of the peaks of soot concentration, where the soot concentration was relatively high and resulting attenuation of the LII signal was large. The radial profile shape of soot concentration was not changed a lot, but the absolute value of the soot volume fraction around outside edge changed from 4ppm to 6.5 ppm at r=2.8mm after correction. This means that the attenuation of LII signal was approximately 40% at this point, which is higher than the average attenuation rate of this flame, 10~15%.

  • PDF

Understanding Pollutant Emission in a Heavy-Duty Diesel Engine with JP-8 and Diesel (대형 디젤 엔진에서 JP-8 과 디젤 적용 시의 배기 배출물 특성에 대한 이해)

  • Lee, Jin-Woo;Bae, Choong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1375-1381
    • /
    • 2011
  • Combustion processes in an optically-accessible single-cylinder heavy-duty diesel engine equipped with a highpressure common-rail injection system were investigated for JP-8 and diesel. Direct imaging and two-color thermometry were employed to verify the emission trend for both fuels. The combustion process was characterized by image analysis with focus on luminosity. The results of two-color thermometry were analyzed on the basis of the flame temperature and KL factor distribution. Analysis of the combustion process by direct imaging showed that the ignition delay was longer for JP-8 than for diesel, while the flame was extinguished rapidly. Analysis of the flame luminosity showed that the combustion intensity was higher for diesel and that the flame lasted for a longer duration in this case. Two-color thermometry results showed that the high-temperature region extended over a large area during JP-8 combustion, implying the formation of a large amount of $NO_x$. In addition, the KL factor showed low level over a large area and relatively homogeneous in the case of JP-8 combustion, which implied that less smoke was produced when using this fuel.