• 제목/요약/키워드: Single crystal thin film

검색결과 305건 처리시간 0.03초

초전형 적외선 센서를 위한 MgO(100)/$Si_3N_4/SiO_2/Si_3N_4$/Si 기판 제작 (Fabrication of MgO(100)/$Si_3N_4/SiO_2/Si_3N_4$/Si Substrate for Pyroelectric IR Sensor)

  • 김성우;성세경;류지열;최우창;최혁환;이명교;권태하
    • 센서학회지
    • /
    • 제9권2호
    • /
    • pp.90-95
    • /
    • 2000
  • $Si_3N_4/SiO_2/Si_3N_4$/Si 판위에 MgO 박막을 성장하여 MgO 단결정과 결정배향성이 유사한 초전형 적외선 센서용 기판을 제작하였다. RF 마그네트론 스퍼터링법으로 MgO 박막을 성장하였고, 그 위에 Pt 하부전극과 PLT 박막을 성장시킨 후 c축 배향성을 조사하였다. $500^{\circ}C$의 기판온도와 30 mTorr의 분위기 압력 및 160 W의 RF power에서 성장된 MgO 박막이 단결정 MgO가 가지는 배향성 정도의 우수한 a축 배향성을 보였고, 그 위에 성장된 PLT 박막은 MgO 단결정 기판위에 성장된 것과 거의 회절강도 변화가 유사한 c축 배향성을 보였다.

  • PDF

에피택시 성장으로 제작한 BSCCO 박막의 단결정 형성 (Single Crystal Formation of BSCCO Thin Films by Epitaxy Growth)

  • 천민우;양승호;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.671-674
    • /
    • 2004
  • BSCCO thin films have been fabricated by epitaxy growth at an ultra-low growth rate. The growth rates of the films was set in the region from 0.17 to 0.27 nm/min. MgO(100) was used as a substrate. In order to appreciate stable existing region of Bi 2212 phase with temperature and ozone pressure, the substrate temperature was varied between 655 and 820 $^{\circ}C$ and the highly condensed ozone gas pressure(PO3) in vacuum chamber was varied between $2.0{\times}10^{-6}$ and $2.3{\times}10^{-5}$ Torr. Bi 2212 phase appeared in the temperature range of 750 and 795 $^{\circ}C$ and single phase of Bi 2201 existed in the lower region than $785\;^{\circ}C$. Whereas, $PO_3$ dependance on structural formation was scarcely observed regardless of the pressure variation. And high quality of c-axis oriented Bi 2212 thin film with $T_c$(onset) of about 90 K and $T_c$(zero) of about 45 K is obtained. Only a small amount of CuO in some films was observed as impurity, and no impurity phase such as $CaCuO_2$ was observed in all of the obtained films.

  • PDF

Thin Film Magneto-Optic Materials

  • Kim, You-Song
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1997년도 Proceedings of the 12th KACG Technical Meeting and the 4th Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.121-124
    • /
    • 1997
  • Emergence of advanced materials has been realized by the great demands for sophisticated state devices in high technology industry. It is the ear of speedy evolution of science and technology, in particular, materials processing technology, which enables us to synthesize any materials with respect to its purity and its perfection of crystal structure and shape (form) that have, heretofore not been available. The availability of ultra pure, fine raw materials, single crystals and thick/thin film materials has been largely responsible for such startling progresses that have been made in the realization of unforeseen, functional devices for high technology industry. Of the functional devices such as passive as active devices, non-silicon devices are mostly passive. Piezoelectric, electro-optic, magneto-optic devices, etc. are some of the examples. In this paper, magneto-optic materials for Faraday device, which is little known, are reviewed including its processing toward practical applications.

  • PDF

순차 스퍼터 법과 증발 법으로 제작한 박막의 특성 (Characteristics of Thin Films Fabricated by Using the Layer-by-Layer Sputtering and Evaporation Method)

  • 천민우;박용필;김정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.571-574
    • /
    • 2003
  • The thin films fabricated by using the layer-by-layer sputtering was compared with the thin film fabricated by using the evaporation method. Re-evaporation in the form of Bi atoms or $Bi_2O_3$ molecules easily bring out the deficiency of Bi atoms in thin film due to the long sputtering time of the layer-by-layer deposition. On the other hand, the respective atom numbers corresponding to BiSrCaCuO phase is concurrently supplied on the film surface in the evaporation deposition process and leads to BiSrCaCuO phase formation. Also, it is cofirmed that by optimizing the deposition condition, each single phase of the Bi2201 phase and the Bi2212 phase can be fabricated, the sticking coefficient of Bi element is clearly related to the changing of substrate temperature and the formation of the Bi2212 phase.

  • PDF

Characteristics of Si Nano-Crystal Memory

  • Kwangseok Han;Kim, Ilgweon;Hyungcheol Shin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제1권1호
    • /
    • pp.40-49
    • /
    • 2001
  • We have developed a repeatable process of forming uniform, small-size and high-density self-assembled Si nano-crystals. The Si nano-crystals were fabricated in a conventional LPCVD (low pressure chemical vapor deposition) reactor at $620^{\circ}c$ for 15 sec. The nano-crystals were spherical shaped with about 4.5 nm in diameter and density of $5{\times}l0^{11}/$\textrm{cm}^2$. More uniform dots were fabricated on nitride film than on oxide film. To take advantage of the above-mentioned characteristics of nitride film while keeping the high interface quality between the tunneling dielectrics and the Si substrate, nitride-oxide tunneling dielectrics is proposed in n-channel device. For the first time, the single electron effect at room temperature, which shows a saturation of threshold voltage in a range of gate voltages with a periodicity of ${\Delta}V_{GS}\;{\approx}\;1.7{\;}V$, corresponding to single and multiple electron storage is reported. The feasibility of p-channel nano-crystal memory with thin oxide in direct tunneling regime is demonstrated. The programming mechanisms of p-channel nano-crystal memory were investigated by charge separation technique. For small gate programming voltage, hole tunneling component from inversion layer is dominant. However, valence band electron tunneling component from the valence band in the nano-crystal becomes dominant for large gate voltage. Finally, the comparison of retention between programmed holes and electrons shows that holes have longer retention time.

  • PDF

Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구 (Growth and photocurrent study on the splitting of the valence band for ZnIn2S4 single crystal thin film by hot wall epitaxy)

  • 홍광준
    • 센서학회지
    • /
    • 제16권6호
    • /
    • pp.419-427
    • /
    • 2007
  • Single crystal $ZnIn_{2}S_{4}$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the polycrystal source of $ZnIn_{2}S_{4}$ at $610^{\circ}C$ prepared from horizontal electric furnace. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $ZnIn_{2}S_{4}$ thin films measured with Hall effect by van der Pauw method are $8.51{\times}10^{17}\;electron/cm^{-3}$, $291{\;}cm^{2}/v-s$ at 293 K, respectively. The photocurrent and the absorption spectra of $ZnIn_{2}S_{4}$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10 K. The temperature dependence of the energy band gap of the $ZnIn_{2}S_{4}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=2.9514 eV. ($7.24{\times}10^{-4}\;eV/K$)$T^{2}$/(T+489 K). Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) for the valence band of the $ZnIn_{2}S_{4}$ have been estimated to be 167.8 meV and 14.8 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}$-, $B_{1}$-, and $C_{41}$-exciton peaks.

Lamp ZMR에 의한 SOI에서 비대칭 선형가열의 효과 (Effect of Asymmetric Line Heating in SOI Lamp ZMR)

  • 반효동;이시우;임인곤;주승기
    • 한국결정성장학회지
    • /
    • 제2권2호
    • /
    • pp.53-62
    • /
    • 1992
  • SOI구조 형성을 위항 대용융 재결정(ZMR) 공정에서 타원형의 반사경을 기울여 빔강도분포를 인위적으로 변화시켜 실리콘 박막을 재결정시켰다. 비대칭 선형가열 효과를 해석하기 위하여 전산모사를 행하여 응고계면 근처에서의 온도분포와 열구배 변화를 조사하였다. 상부집속열원의 경사각이 증가할수록 액상의 과냉도와 실리콘 박막내의 결함열 간격은 증가하였다. 주된 결함은 연속적인 아결정립계였고 결함밀도가 낮은 경우는 isolated threading dislocations만이 관찰되었다. 단면 TEM과 박막 XRD 분석결과 실리콘 박막은 (100) 집합조직을 갖는 단결정 박막으로 재결정되었음을 확인할 수 있었다.

  • PDF

Hot Wall Epitaxy(HWE)에 의한 $AgInSe_2$단결정 박막 성장과 특성에 관한 연구 (The study of growth and characterization of $AgInSe_2$ single crystal thin film by hot wall epitaxy)

  • 홍광준
    • 한국결정성장학회지
    • /
    • 제9권2호
    • /
    • pp.197-206
    • /
    • 1999
  • 수평 전기로에서 $AgInSe_2$다결정을 합성하여 HWE(Hot Wall Epitaxy) 방법으로 $AgInSe_2$ 단결정 박막을 반절연성 GaAs(100) 위에 성장하였다. $AgInSe_2$단결정 박막은 증발원과 기판의 온도를 각각 $610^{\circ}C$, $450^{\circ}C$로 성장하였다. 이때 성장된 단결정 박막의 두께는 3.8$\mu\textrm{m}$였다. 단결정 박막의 결정성의 조사에서 20 K에서 측정한 광발광 스펙트럼은 884.1nm(1.4024eV) 근처에서 excition emission 스펙트럼이 가장 강하게 나타났으며, 또한 이중결정 X-선 회절곡선(DCXD)의 반폭치(FWHM)도 125arcsec로 매우 작은 값으로 측정되어 최적 성장 조건임을 알 수 있었다. Hall 효과는 van der Pauw 방법에 의해 측정되었으며, 온도에 의존하는 운반자 농도와 이동도는 293K에서 각각 $9.58{\times}10^{22} electron/m^3,\; 3.42{\times}10^{-2}m^2/V{\cdot}s$였다. $AgInSe_2$단결정 박막의 광전류 단파장대 봉우리들로부터 20K에서 측정된 $\Delta$Cr(Crystal field splitting)은 0.12eV, $\Delta$So(spin orbit coupling)는 0.29 eV였다. 20K에서 얻어진 광발광 봉우리들 중에서 881.1nm(1.4071 eV)와 882.4nm(1.4051 eV)는 free exciton$E_x$의 upper polariton과 lower polariton인$E_x^U$$E_x^L$를 의미하며, 884.1nm(1.4024 eV)는 donor-bound exciton emission에 의한 $I_2$봉우리를, 885.9nm(1.3995 eV)는 acceptor-bound exciton emission에 의한 $I_1$ 봉우리를 각각 나타내었다. 또한 887.5nm(1.3970 eV)에서 관측된 봉우리는 DAP(donor-acceptor pair)에 기인하는 광발광 봉우리로 해석되었다.

  • PDF

EFFECT OF ANNEALING ON THE OPTICAL PROPERTY OF RF-SPUTTERED CdTe THIN FILM

  • Lee, Dong-Young;Lee, Soon-Il;Oh, Soo-Ghee
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.666-672
    • /
    • 1996
  • The optical property of CdTe thin film is important for applications such as the compound semiconductor type solar cells. CdTe films are prepared by RF sputtering at various substrate temperature between $25^{\circ}C$ and $300^{\circ}C$, then, annealed in argon gas environment at $400^{\circ}C$. The annealing process of the thin film caused variation in the film structure and the composition of films. The deformation of CdTe thin film was observed by X-ray diffractometry. After annealing, the grain size increased and the portion of the non-crystalline CdTe reduced. Futhermore, the structure of sputtered CdTe film grown at the substrate temperature more than $250^{\circ}C$ was enhanced in the (111) direction of zincblend structure. There was a discrepancy, in the spectroscopic ellipsometer spectrum, between the single crystal CdTe and the sputtered CdTe thin films, especially in the region over 3.2eV. An oxidation layer was found on the CdTe thin film by spectroscopic ellipsometry analysis.

  • PDF

Study on Graphene Thin Films Grown on Single Crystal Sapphire Substrates Without a Catalytic Metal Using Pulsed Laser Deposition

  • Na, Byoung Jin;Kim, Tae Hwa;Lee, Cheon;Lee, Seok-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권2호
    • /
    • pp.70-73
    • /
    • 2015
  • Many studies have used chemical vapor deposition (CVD) to grow graphene. However, CVD is inefficient in terms of production costs, and inefficient for mass production because a transfer process using a catalytic metal is needed. In this study, graphene thin films were grown on single crystal sapphire substrates without a catalytic metal, using pulsed laser deposition (PLD) to resolve these problems. In addition, the growth of graphene using PLD was confirmed to have a close relationship with the substrate temperature.