• Title/Summary/Keyword: Single chain insulin precursor

Search Result 4, Processing Time 0.015 seconds

Fermentation and Purification of LacZ-Fused Single Chain Insulin Precursor for($B^{30}$-Homoserine) Human Insulin

  • SeungYup Lee;Jeo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.9-12
    • /
    • 1996
  • In order to produce the single chain precursor of a novel human insulin analogue, (B30-Homoserine) insulin, the fermentative behaviors of Escherichia coli JM103 were studied, which harbors pKBA plasmid carrying a hybrid gene in which the gene for a single chain precursor was fused with lacZ gene under tac promoter. The maximal induction of gene expression was achieved when more than 0.05 mM of isopropyl-$\beta$-D-thiogalactopyranoside(IPTG) was supplemented to fermentation medium after 4 h cultivation of E. coli, and followed by longer than 2-h fermentation. The hybrid protein of the single chain insulin precursor was isolated from cytoplasmic inclusion bodies by dissolving in 8M urea solution, and purified through DEAE-Sephacel and Sephadex G-200 column chromatographies with a recovery of 35%. The finally purified hybrid protein showed a single band on sodium dodecyl sulfate-polyacrylamide gel.

  • PDF

Production and Purification of Single Chain Human Insulin Precursors with Various Fusion Peptides

  • Cho, Chung-Woo;Park, Sun-Ho;Nam, Doo-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.2
    • /
    • pp.144-149
    • /
    • 2001
  • For the production and purification of a single chain human insulin precursor, four types of fusion peptides $\beta$-galactosidase (LacZ), maltose binding protein (MBP), glutathione-S-transferase (GST), and (His)(sub)6-tagged sequence (HTS) were investigated. Recombinant E. coli harboring hybrid genes was cultivated at 37$\^{C}$ for 1h, and gene induction occurred when 0.2mM of isopropyl-D-thiogalactoside (IPTG) was added to the culture broth, except for E. coli BL21 (DE3) pLysS harboring a pET-BA cultivation with 1.0mM IPTG, followed by a longer than 4h batch fermentation respectively. DEAE-Sphacel and Sephadex G-200 gel filtration chromatography, amylose affinity chromatography, glutathione-sepharose 4B affinity chromatography, and a nickel chelating affinity chromatography system as a kind of immobilized metal ion affinity chromatography (IMAC) were all employed for the purification of a single chain human insulin precursor. The recovery yields of the HTS-fused, GST-fused, MBP-fused, and LacZ-fused single chain human insulin precursors resulted in 47%, 20%, 20%, and 18% as the total protein amounts respectively. These results show that a higher recovery yield of the finally purified recombinant peptides was achieved when affinity column chromatography was employed and when the fused peptide had a smaller molecular weight. In addition the pET expression system gave the highest productivity of a fused insulin precursor due to a two-step regulation of the gene expression, and the HTS-fused system provided the highest recovery of a fused insulin precursor based on a simple and specific separation using the IMAC technique.

  • PDF

Design and Cloning of the Gene for a Novel Insulin Analogue, $(B^{30}$-Homoserine) Human Insulin

  • Nam, Doo-H.;Ko, Jeong-Heon;Lee, Seung-Yup
    • Archives of Pharmacal Research
    • /
    • v.16 no.4
    • /
    • pp.271-275
    • /
    • 1993
  • In order to prepare a novel human insulin analogue suhbstituted with homoserine at B$^{30}$ / position, (B$^{30}$ /-homoserine) human insulin, a synthetic gene was designed by linking directly a gene for B chain with that for A chain. This gene was constructed by enzymatic joining of 10 different synthetic oligonucleotides, and then inserted at the polylinker region of pUC19 plasmid. To achieve a high level of gene expression, the gene fusion technique region of pUC19 plasmid. To achieve a high level of gene expression, the gene fusion technique was employed using amino terminal regions of lacZ gene up to Clal or hpal, and either of them has been located under tac promoter. The chemical induction of these fused genes by isopropyl-.betha.-D-thiogalactopyranoside (IPTG) gave a satisfactory level of expression in Escherichia coli harboring the ocnstructed plasmids. It was observed that the fused gene product as a single chain insulin precusor was produced more than 30% of total cell protein of E. coli as a form of inclusion body.

  • PDF

Purification of Single Chain Human Insulin Precursors Using Various Fusion Proteins

  • Park, Seon-Ho;Jo, Jeong-U;Nam, Du-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.619-622
    • /
    • 2000
  • For the production of $B^{30}-homoserine$ human insulin precursor, four types of fusion peptides LacZ, MBP, GST, and His-tagged sequence were studied in this work. Recombinant E. coli JM 103 and E. coli JM 109 containing fusion peptides were cultivated at $37^{\circ}C$ for 1hr, and gene expression was occurred when 0.5mM of isopropyl-D-thiogalactoside(IPTG) was added to the culture broth, and followed by longer than 4hr fermentation respectively. DEAE-Sphacel and gel filtration chromatography, amylose and glutathione-Sepharose 4B affinity chromatography, and nickel-affinity chromatography system were employed as purification of $B^{30}-homoserine$ human insulin precursor. Recovery yields of His-tagged, LacZ, GST, and MBP fused $B^{30}-homoserine$ human insulin precursor resulted in 47%, 20%, 20%, and 18%, respectively.

  • PDF