• Title/Summary/Keyword: Single chain Fv

Search Result 45, Processing Time 0.02 seconds

Preparation and Characterization of Paclitaxel-loaded PLGA Nanoparticles Coated with Cationic SM5-1 Single-chain Antibody

  • Kou, Geng;Gao, Jie;Wang, Hao;Chen, Huaiwen;Li, Bohua;Zhang, Dapeng;Wang, Shuhui;Hou, Sheng;Qian, Weizhu;Dai, Jianxin;Zhong, Yanqiang;Guo, Yajun
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.731-739
    • /
    • 2007
  • The purpose of this study was to develop paclitaxel-loaded poly(lactide-co-glycolide) (PLGA) nanoparticles coated with cationic SM5-1 single-chain antibody (scFv) containing a polylysine (SMFv-polylys). SM5-1 scFv (SMFv) is derived from SM5-1 monoclonal antibody, which binds to a 230 kDa membrane protein specifically expressed on melanoma, hepatocellular carcinoma and breast cancer cells. SMFv-polylys was expressed in Escherichia coli and purified by cation-exchange chromatography. Purified SMFv-polylys was fixed to paclitaxel-loaded PLGA nanoparticles to form paclitaxel-loaded PLGA nanoparticles coated with SMFv-polylys (Ptx-NP-S). Ptx-NP-S was shown to retain the specific antigen-binding affinity of SMFv-polylys to SM5-1 binding protein-positive Ch-hep-3 cells. Finally, the cytotoxicity of Ptx-NP-S was evaluated by a non-radioactive cell proliferation assay. It was demonstrated that Ptx-NP-S had significantly enhanced in vitro cytotoxicity against Ch-hep-3 cells as compared with non-targeted paclitaxel-loaded PLGA nanoparticles. In conclusion, our results suggest that cationic SMFv-polylys has been successfully generated and may be used as targeted ligand for preparing cancer-targeted nanoparticles.

Selection of Vaccinia Virus-Neutralizing Antibody from a Phage-Display Human-Antibody Library

  • Shin, Yong Won;Chang, Ki-Hwan;Hong, Gwang-Won;Yeo, Sang-Gu;Jee, Youngmee;Kim, Jong-Hyun;Oh, Myoung-don;Cho, Dong-Hyung;Kim, Se-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.651-657
    • /
    • 2019
  • Although smallpox was eradicated in 1980, it is still considered a potential agent of biowarfare and bioterrorism. Smallpox has the potential for high mortality rates along with a major public health impact, eventually causing public panic and social disruption. Passive administration of neutralizing monoclonal antibodies (mAbs) is an effective intervention for various adverse reactions caused by vaccination and the unpredictable nature of emerging and bioterrorist-related infections. Currently, vaccinia immune globulin (VIG) is manufactured from vaccinia vaccine-boosted plasma; however, this production method is not ideal because of its limited availability, low specific activity, and risk of contamination with blood-borne infectious agents. To overcome the limitations of VIG production from human plasma, we isolated two human single-chain variable fragments (scFvs), (SC34 and SC212), bound to vaccinia virus (VACV), from a scFv phage library constructed from the B cells of VACV vaccine-boosted volunteers. The scFvs were converted to human IgG1 (VC34 and VC212). These two anti-VACV mAbs were produced in Chinese Hamster Ovary (CHO) DG44 cells. The binding affinities of VC34 and VC212 were estimated by competition ELISA to $IC_{50}$ values of $2{\mu}g/ml$ (13.33 nM) and $22{\mu}g/ml$ (146.67 nM), respectively. Only the VC212 mAb was proven to neutralize the VACV, as evidenced by the plaque reduction neutralization test (PRNT) result with a $PRNT_{50}$ of ~0.16 mg/ml (${\sim}1.07{\mu}M$). This VC212 could serve as a valuable starting material for further development of VACV-neutralizing human immunoglobulin for a prophylactic measure against post-vaccination complications and for post-exposure treatment against smallpox.

Polyhydroxyalkanoate Chip for the Specific Immobilization of Recombinant Proteins and Its Applications in Immunodiagnostics

  • Park, Tae-Jung;Park, Jong-Pil;Lee, Seok-Jae;Hong, Hyo-Jeong;Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.173-177
    • /
    • 2006
  • In this study, a novel strategy was developed for the highly selective immobilization of proteins, using the polyhydroxyalkanoate (PHA) depolymerase substrate binding domain (SBD) as an active binding domain. In order to determine the appropriacy of this method for immunodiagnostic assays, the single-chain antibody (ScFv) against the hepatitis B virus (HBV) preS2 surface protein and the severe acute respiratory syndrome coronavirus (SARS-CoV) envelope protein (SCVe) were fused to the SBD, then directly immobilized on PH A-coated slides via microspotting. The fluorescence-labeled HBV antigen and the antibody against SCVe were then utilized to examine specific interactions on the PHA-coated surfaces. Fluorescence signals were detected only at the spotted positions, thereby indicating a high degree of affinity and selectivity for their corresponding antigens/antibodies. Furthermore, we detected small amounts of ScFv-SBD (2.7 ng/mL) and SCVe-SBD fusion proteins (0.6ng/mL). Therefore, this microarray platform technology, using PHA and SBD, appears generally appropriate for immunodiagnosis, with no special requirements with regard to synthetic or chemical modification of the biomolecules or the solid surface.

Development of Human Antibody Inhibiting RNase H Activity of Polymerase of Hepatitis B Virus Using Phage Display Technique (Phage Display 기법을 이용한 B형 간염 바이러스 Polymerase의 RNase H 활성을 억제하는 인간 단세포군 항체의 개발)

  • Lee, Seong-Rak;Song, Eun-Kyoung;Jeong, Young-Joo;Lee Young-Yi;Kim, Ik-Jung;Choi, In-Hak;Park, Sae-Gwang
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.16-22
    • /
    • 2004
  • Background: To develop a novel treatment strategy for hepatitis B virus infection, a major cause of liver chirosis and cancer, we aimed to make human monoclonal antibodies inhibiting RNase H activity of P protein playing in important role in HBV replication. In this regard, phage display technology was employed and demonstrated as an efficient cloning method for human monoclonal antibody. So this study analysed the usability of human monoclonal antibody as protein based gene therapy. Methods: RNase H of HBV was expressed as fusion protein with maltose binding protein and purified with amylose resin column. Single chain Fv (scFv) phage antibody library was constructed by PCR cloning using total RNAs of PBMC from 50 healthy volunteers. Binders to RNase H were selected with BIAcore 2000 from the constructed library, and purified as soluble antibody fragment. The affinity and sequences of selected antibody fragments were analyzed with BIAcore and ABI automatic sequencer, respectively. And finally RNase H activity inhibiting assay was carried out. Results: Recombinant RNase H expressed in E. coli exhibited an proper enzyme activity. Naive library of $4.46{\times}10^9cfu$ was screened by BIAcore 2000. Two clones, RN41 and RN56, showed affinity of $4.5{\times}10^{-7}M$ and $1.9{\times}10^{-7}M$, respectively. But RNase H inhibiting activity of RN41 was higher than that of RN56. Conclusion: We cloned human monoclonal antibodies inhibiting RNase H activity of P protein of HBV. These antibodies can be expected to be a good candidate for protein-based antiviral therapy by preventing a replication of HBV if they can be expressed intracellularly in HBV-infected hepatocytes.

Localized Surface Plasmon Resonance (LSPR) Biosensors on Metal Nanoparticles with the Design of Bioreceptors

  • Kim, Min-Gon;Park, Jin-Ho;Byun, Ju-Young;Shin, Yong-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.126-126
    • /
    • 2014
  • Label-free biomolecular assay based localized surface plasmon resonance (LSPR) of noble metal nanoparticles enables simple and rapid detection with the use of simple equipment. Nanosized metal nanoparticles exhibit a strong absorption band when the incident light frequency is resonant with the collective oscillation of the electrons, which is known as the LSPR. Here we demonstrate localized surface plasmon resonance (LSPR) substrates such as plasmonic Au nanodisks fabricated by a nanoimprinting process and gold nanorod-immobilized surfaces and their applications to highly sensitive and/or label-free biosensing. To increase detection sensitivity various bioreceptors weree designed. A single chain variable fragment (scFv) was used as a receptor to bind C-reactive protein (CRP). The results of this effort showed that CRP in human serum could be quantitatively detected lower than 1 ng/ml. Aptamers, which were immobilized on gold nanorods, were used to detect mycotoxins. The specific binding of ochratoxin A (OTA) to the aptamer was monitored by the longitudinal wavelength shift of LSPR peak in the UV-Vis spectra resulting from the changes of local refractive index near the GNR surface induced by accumulation of OTA and G-quadruplex structure formation of the aptamer. According to our results, OTA could be quantitatively detected lower than 1 nM level. Additionally, aptamer-functionalized GNR substrate was quite robust and can be regenerated many times by rinsing at 70 OC to remove bound target. During seven times of washing steps, the developed OTA sensing system could be reusable. Moreover, the proposed biosensor exhibited selectivity over other mycotoxins with an excellent recovery for detection in grinded corn samples, suggesting that the proposed LSPR based aptasensor plays an important role in label-free detection of mycotoxins.

  • PDF