• Title/Summary/Keyword: Single Strand Conformation Polymorphism

Search Result 69, Processing Time 0.028 seconds

Asymmetric Polymerase Chain Reaction-Single-Strand Conformation Polymorphism (Asymmetric PCR-SSCP) as a Simple Method for Allele Typing of HLA-DRB

  • Kang, Joo-Hyun;Kim, Kyeong-Hee;Maeng, Cheol-Young;Kim, Kil-Lyong
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.529-534
    • /
    • 1999
  • Asymmetric PCR and single-strand conformation polymorphism (SSCP) methods were combined to analyze human leukocyte antigen (HLA)-DRB allele polymorphism. Asymmetric PCR amplification was applied to generate single-stranded DNA (ssDNA) using the nonradioactive oligonucleotide primers desinged for the polymorphic exon 2 region. The conformational differences of ssDNAs, depending on the allele type, were analyzed by nondenaturing polyacrylamide gel electrophoresis and visualized by ethidium bromide staining. The ssDNAs were clearly separated from double-stranded DNA without interference and obviously migrated depending on their allele type. This method was applied to the genomic DNA either from homozygous or from heterozygous cell lines containing the DR4 allele as template DNA using DR4-specific primers, and satisfying results were obtained. Compared to the standard PCR-SSCP method, this asymmetric PCR-SSCP method has advantages of increased speed, reproducibility, and convenience. Along with PCR-SSP or sequence-based typing, this method will be useful in routine typing of HLA-DRB allele.

  • PDF

Genetic Differentiation of Phytoplasma Isolates by DNA Heteroduplex Mobility Assay and Single-Strand Conformation Polymorphism Analysis

  • Cha, Byeongjin;Han, Sangsub
    • The Plant Pathology Journal
    • /
    • v.18 no.6
    • /
    • pp.308-312
    • /
    • 2002
  • Heteroduplex mobility assay (HMA) and single-strand conformation polymorphism (SSCP) analyses combined with PCR were developed for genetic differentiation of various phytoplasma isolates. In the HMA and SSCP analyses, differences in the mobility shifts and the SSCP band patterns identified three distinct types of phyto-plasmas: Type Ⅰ, jujube witches'-broom (JWB) and ligustrum witches'-broom (LiWB); Type Ⅱ, mulberry dwarf(MD) and sumac witches'-broom (SuWB); and Type Ⅲ, paulownia witches'-broom (PaWB). Results of the sequence analyses revealed that phytoplasmas of JWB and MD had 100% homology with LiWB and SuWB, respectively. On the other hand, PaWB phyto-plasma had 97.8% homology with MD phytoplasma. The PCR-HMA and SSCP techniques were very useful in determining variations in sequence among several isolates of phytoplasmas. Furthermore, the methods were rapid, economical, highly sensitive, and easy to handle with the gels.

Single-Strand Conformation Polymorphism Analysis by Microchip Electrophoresis for the Rapid Detection of Point Mutation in Human Obesity Gene

  • Kang, Seong-Ho;Jang, Soo-Young;Park, Sang-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1346-1352
    • /
    • 2006
  • We describe an effective method of microchip electrophoresis (ME) based on single strand conformation poly-morphism (SSCP) analysis to rapidly detect the point mutation, Leu72Met, in a human obesity gene. The 207-bp dsDNA in the Leu72Met region, an estimate of the child obesity DNA mutant, was amplified by polymerase chain reaction (PCR) and submitted to a conventional glass microchip analysis with a sieving matrix of 1.75% poly(vinylpyrrolidone) (Mr 1 300 000), 1.0% poly(ethyleneoxide) (Mr 600 000) and 5.0% w/w glycerol. When combined with base stacking (BS) with hydroxide ions, the SSCP-ME provided rapid analysis as well as sensitive detection. The detection sensitivity was effectively enhanced in the OH- concentration range of 0.01-0.025 M NaOH. The sensitivity and speed of this ME-based SSCP methodology for the rapid detection of Leu72Met point mutations makes this an attractive method for diagnosing childhood obesity in a clinical diagnostic laboratory.

Mutation Analysis in β2-Adrenergic Receptor Gene by Single Strand Conformation Polymorphism (SSCP) and Denaturing High Performance Liquid Chromatography (DHPLC) (SSCP와 DHPLC에 의한 β2-교감신경수용체 유전자의 돌연변이 분석)

  • Park, Sang-Bum;Han, Sang-Man;Nam, Youn-Hyoung;Jang, Won-Cheoul
    • Analytical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.53-59
    • /
    • 2004
  • Up to now, methods for the detection of genetic alterations as single strand conformation polymorphism (SSCP) or denaturing gradient gel electrophoresis (DGGE) have been used. It is too labor-intensive and expensive to serve for routine analysis. Moreover, lower in its sensitivity and specificity being also strongly dependent on the experience of the investigater. To improve these problems, we analysed mutation of ${\beta}_2$-adrenergic receptor gene that controls bronchial asthma by denaturing high performance liquid chromatography (DHPLC) according to ion-pair reversed phase chromatography (IP-RPC). We extracted genomic DNA from 80 asthma patients and then amplified DNA using PCR and analysed PCR product by SSCP and DHPLC. As a result, we analysed mutation frequency is 19 (23.75%) on SSCP and 25 (31.25%) on DHPLC in ${\beta}_2$-adrenergic receptor gene. We conclude that DHPLC is a fast and simple screening method rather than SSCP analysis.