• Title/Summary/Keyword: Single Rail Track

Search Result 21, Processing Time 0.027 seconds

Nonlinear Analysis with contact element between old and new concrete (Contact 요소를 이용한 신.구 콘크리트의 비선형 해석)

  • Cho, Sun-Kyu;Lee, John-Sun;Jeong, Woo-Cheol;Lee, John-Shin
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1050-1055
    • /
    • 2007
  • In the case of a rail road bridge extension work, especially single track to double track, the foundation of new substructure which supports the extended part of superstructure could be interfered by the exist foundation of an old bridge. When these two foundations are jointed to prevent such fatal effects of the structure as unequal subsidence of soil foundations, it is important to prove the structural behaviour of the joining surfaces between new foundation and old foundation. 3-Dimensional Finite Element Analysis Method have been studied for the solutions of the structural behaviour of the foundations. In this analysis, 'Contact Element' which allows the sliding of each adjoining member is used for the joint of the boundary surface of the old and new pier foundations. Furthermore, Material Nonlinear Behaviour Analysis also supports the accuracy of the result in this study because the foundations consist of concrete main bodies and reinforced steel bars. These detailed analyses secure the verification of the structural safety of the foundations in the extension work more firmly.

  • PDF

The Analysis of 4-Conductors Catenary System of AC Railway Feeding System and Calculation of Induced Voltage near Rail Track using the FDTD Method (교류 전기철도 급전계통 4도체군 전차선로 분석 및 FDTD 방법을 이용한 선로 주변 유도전압 계산에 관한 연구)

  • Ryu, Kyu-Sang;Yeom, Hyoung-Sun;Cho, Gyu-Jung;Lee, Hun-Do;Kim, Cheol-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.1958-1964
    • /
    • 2016
  • AC railway feeding system use single phase to supply power to the railway vehicles. And the system use the rail track as a return current path, so that current flows in the rail. In this situation inductive interference on communication system and unsafe environment can appear on railway system. Therefore knowing the current distribution of catenary system and analysing the return current is required. In this study detail return current distribution was analyzed by modeling the catenary system as 4-conductors group. The distribution characteristics and trends of return current were studied by using the PSCAD/EMTDC and FDTD method that based on Maxwell equation was used to calculate the induced voltage. Simulation code was made by MATLAB. Using this study result data, we can suggest the proper installation location of digital device and these data can be used for additional studies related to return current or induced voltage as a base data.

The Feasibility Study of a Light Rail Transit Development (경량전철 개발에 따른 경제적 파급효과 분석 연구)

  • Nam, Doo-Hee;Lim, Kwan-Su;Lee, Jin-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.119-124
    • /
    • 2010
  • Light rail is an electric railway system, characterized by its ability to operate single or multiple car consists (trains) along exclusive rights-of-way at ground level, on aerial structures, in subways or in streets, able to board and discharge passengers at station platforms or at street, track, or car-floor level and normally powered by overhead electrical wires. Depending upon the specific system, the light rail lends some major advantages to urban settings. The evaluation of light rail technology as a potential component of regional transit systems has been the subject of extensive studies throughout the country in the past decade. For the study, feasibility was defined as "the ability of an LRT system to achieve certain level of transportation market in comparison with other transportation alternatives." This paper describes the feasibility study to evaluate a proposed light rail development project. The minimum are those LRT systems that would met to make a project feasible for further evaluation.

Wind loads on a moving vehicle-bridge deck system by wind-tunnel model test

  • Li, Yongle;Hu, Peng;Xu, You-Lin;Zhang, Mingjin;Liao, Haili
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.145-167
    • /
    • 2014
  • Wind-vehicle-bridge (WVB) interaction can be regarded as a coupled vibration system. Aerodynamic forces and moment on vehicles and bridge decks play an important role in the vibration analysis of the coupled WVB system. High-speed vehicle motion has certain effects on the aerodynamic characteristics of a vehicle-bridge system under crosswinds, but it is not taken into account in most previous studies. In this study, a new testing system with a moving vehicle model was developed to directly measure the aerodynamic forces and moment on the vehicle and bridge deck when the vehicle model moved on the bridge deck under crosswinds in a large wind tunnel. The testing system, with a total length of 18.0 m, consisted of three main parts: vehicle-bridge model system, motion system and signal measuring system. The wind speed, vehicle speed, test objects and relative position of the vehicle to the bridge deck could be easily altered for different test cases. The aerodynamic forces and moment on the moving vehicle and bridge deck were measured utilizing the new testing system. The effects of the vehicle speed, wind yaw angle, rail track position and vehicle type on the aerodynamic characteristics of the vehicle and bridge deck were investigated. In addition, a data processing method was proposed according to the characteristics of the dynamic testing signals to determine the variations of aerodynamic forces and moment on the moving vehicle and bridge deck. Three-car and single-car models were employed as the moving rail vehicle model and road vehicle model, respectively. The results indicate that the drag and lift coefficients of the vehicle tend to increase with the increase of the vehicle speed and the decrease of the resultant wind yaw angle and that the vehicle speed has more significant effect on the aerodynamic coefficients of the single-car model than on those of the three-car model. This study also reveals that the aerodynamic coefficients of the vehicle and bridge deck are strongly influenced by the rail track positions, while the aerodynamic coefficients of the bridge deck are insensitive to the vehicle speed or resultant wind yaw angle.

Development of an Imaging Based Gang Protection System

  • Grimm, M.;Pelz, M.
    • International Journal of Railway
    • /
    • v.1 no.4
    • /
    • pp.149-156
    • /
    • 2008
  • During maintenance or construction works in or at the tracks of railways, high risks for passengers and railway staff, especially for the workers on the construction site exist. The high risks result out of the movement of rail vehicles, like trains or construction vehicles, which must be faced by using any available technical and operational technologies for securing them against the environment. Therefore, it is necessary to evaluate the level of protection continuously and to identify new and innovative methods and technologies for the protection of the gang (construction worker, machines and material). Especially on construction sites at line sections with two or more parallel tracks but also with single tracks, there are still a lot of incidents and accidents mostly with seriously injured persons or fatalities. These were mainly gang members that breach the railway-loading gage. By using proper warning or protection systems, the avoidance of such accidents must be achieved. The latest developments. in gang protection systems concern on the one hand fixed barriers in the middle between the construction site and the operated track and on the other hand construction vehicles equipped with automatic warning systems. The disadvantage of such protection methods is that the gang can be warned against an approaching train but a monitoring of the gang members cannot be performed. Only one part of a potential dangerous situation will be detected. If the gang members will overhear the acoustic warning signal of the security staff and the workers will not leave the danger zone in the track, the driver of the approaching train had no chance to react to the dangerous situation. An accident is often inevitable. While the detection of acoustic warning signals by the gang members working on a construction site is very difficult, the acoustical planning of an automatic warning system has to be designed for an acoustic short range level of one meter besides the construction vehicle. The decision about the use of today's technical warning system (fixed systems, automatic warning systems, etc.) must be geared to the technical feasibility and the level of safety which is needed. Criteria for decision guidance to block a track should be developed by danger estimation and economical variables. To realize the actual jurisdiction and to minimize the hazards of railway operations by the use of construction vehicles near the tracks further developments are needed. This means, that the warning systems have to be enhanced to systems for protection, which monitor the realization of the warning signal as a precondition for giving a movement authority to a train. This method can protect against accidents caused by predictable wrongdoing. The actual state of the art technique of using a collective warning combined with additional security staff is no longer acceptable. Therefore, the Institute of Transportation System of the German Aerospace Center in Braunschweig (Germany) will develop a gang warning and protection system based upon imaging methods, with optical sensors such as video in visible and invisible ranges, radar, laser, and other. The advantage of such a system based on the possibility to monitor both the gang itself and the railway-loading gauge either of the parallel track or of the same track still in use. By monitoring both situations, the system will be able to generate a warning message for the approaching train, that there are obstacles in the track, so that the train can be stopped to prevent an accident. And also the gang workers will be warned, while they breach their area.

  • PDF

Shear lag effects on wide U-section pre-stressed concrete light rail bridges

  • Boules, Philopateer F.;Mehanny, Sameh S.F.;Bakhoum, Mourad M.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.67-80
    • /
    • 2018
  • Recently, U-section decks have been more and more used in metro and light rail bridges as an innovative concept in bridge deck design and a successful alternative to conventional box girders because of their potential advantages. U-section may be viewed as a single vent box girder eliminating the top slab connecting the webs, with the moving vehicles travelling on the lower deck. U-section bridges thus solve many problems like limited vertical clearance underneath the bridge lowest point, besides providing built-in noise barriers. Beam theory in mechanics assumes that plane section remains plane after bending, but it was found that shearing forces produce shear deformations and the plane section does not remain plane. This phenomenon leads to distortion of the cross section. For a box or a U section, this distortion makes the central part of the slab lagging behind those parts closer to the webs and this is known as shear lag effect. A sample real-world double-track U-section metro bridge is modelled in this paper using a commercial finite element analysis program and is analysed under various loading conditions and for different geometric variations. The three-dimensional finite element analysis is used to demonstrate variations in the transverse bending moments in the deck as well as variations in the longitudinal normal stresses induced in the cross section along the U-girder's span thus capturing warping and shear lag effects which are then compared to the stresses calculated using conventional beam theory. This comparison is performed not only to locate the distortion, warping and shear lag effects typically induced in U-section bridges but also to assess the main parameters influencing them the most.

A Study on the Energy Saving through the Tilting Technology of Rolling Stock (틸팅기술 접목을 통한 철도차량 에너지 저감 연구)

  • Kim, Dae-Sik;Son, Kyong-So;Kim, Ho-Soon;Kim, Jin-Woo;Kim, Jong-Kill
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3027-3031
    • /
    • 2011
  • In this study, By the time that TTX technology is adopted as railway rolling stock, we analyzed quantitatively energy saving by reducing the power consumption with the reduction of the operation time through the speed improvement and suggested the necessity to introduce TTX technology in the domestic rail vehicles. The effect of energy saving by comparing and analyzing the power consumption during the operation by TTX Hanvit 200 and 8200 electric locomotives to pull trains on the same line was suggested and the efficiency of the main devices(i.e C/I) of Hanvit 200 was compared and analyzed by measuring the power consumption by a single unit. For improving KORAIL management environment, reducing energy usage is an urgent challenge, its measures for solving them are constantly considered in many areas. In addition, at the time of improving the conventional track to speed up and changing the signals, Tilting technology will be contributed to the management environment by enlarging the passengers' demand through the reduction of the operation time and saving energy using the existing infrastructure.

  • PDF

A Basic Study on Wheel Flange Climbing using Model Wheelset

  • Nagumo, Yosuke;Tanifuji, Katsuya;Imai, Junichi
    • International Journal of Railway
    • /
    • v.3 no.2
    • /
    • pp.60-67
    • /
    • 2010
  • This paper deals with an experimental study on the wheel flange climbing of railway vehicles, which is a major factor leading to derailment. An experiment is carried out on a 1/5-scale model wheelset of a truck used on a standard-gauge track, which is placed on a roller rig. The lateral external force acting on the wheelset is ramped up until derailment occurs under the condition of a fixed attack angle and wheel-load unbalance ratio. Three parameters, the height of wheel lift, the lateral force, and the wheel load acting on the outer rail, are measured until derailment occurs. From these measurements, it is possible to observe the behavior of the wheelset and to elucidate how the attack angle, the wheel-load unbalance ratio and the lateral external force affect flange-climb derailment. Then, a numerical simulation is carried out using an analytical model based on a single wheelset. As a result, the flange-climb behavior observed in the experiment can be explained theoretically on the bases of the analytical results, although further improvement of the model is desired.

  • PDF

The Site Installation Test of Single-Phase MJ81 Switch Point Machine Localization (단상 MJ81 전기선로전환기 국산품의 현장설치시험)

  • Baek, Jong-Hyen;Kim, Yong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3632-3637
    • /
    • 2009
  • In this paper, we describe the performance results of the field installation test which is required to practicalize the single-phase MJ81 Switch Point Machine. This product has passed the certified test through performance improvement of driving parts in order to use 3 phase MJ81 Switch Point Machine, which is localized by taking over technology from Alstom and Cogifer when constructing Seoul-Busan rapid-transit railway, without change of the electrical equipment at track-side in domestic existing lines which single-phase 220V is used. KRRI and Samsung SDS have localized the single-phase MJ81 Switch Point Machine to improve the speed and safety of the conventional lines through the existing railway technology development project. For practicalization of this, we should, however, verify the performance through not only field installation test in real lines but also interface test with the interlocking. In this paper we verify the practicality of the domestic single-phase MJ81 Switch Point Machine through analysis on the performance result of the field installation test as well as the research contents for this test. Thereby, in Feb 2009 we have received an order from the Korea Rail Network Authority and are currently installing the single-phase MJ81 Switch Point Machine.

Analyzing the Efficiency of Korean Rail Transit Properties using Data Envelopment Analysis (자료포락분석기법을 이용한 도시철도 운영기관의 효율성 분석)

  • 김민정;김성수
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.4
    • /
    • pp.113-132
    • /
    • 2003
  • Using nonradial data envelopment analysis(DEA) under assumptions of strong disposability and variable returns scale, this paper annually estimates productive. technical and allocative efficiencies of three publicly-owned rail transit properties which are different in terms of organizational type: Seoul Subway Corporation(SSC, local public corporation), the Seoul Metropolitan Electrified Railways sector (SMESRS) of Korea National Railroad(the national railway operator controlled by the Ministry of Construction and Transportation(MOCT)), and Busan Urban Transit Authority (BUTA, the national authority controlled by MOCT). Using the estimation results of Tobit regression analysis. the paper next computes their true productive, true technical and true allocative efficiencies, which reflect only the impacts of internal factors such as production activity by removing the impacts of external factors such as an organizational type and a track utilization rate. And the paper also computes an organizational efficiency and annually gross efficiencies for each property. The paper then conceptualized that the property produces a single output(car-kilometers) using four inputs(labor, electricity, car & maintenance and track) and uses unbalanced panel data consisted of annual observations on SSC, SMESRS and BUTA. The results obtained from DEA show that, on an average, SSC is the most efficient property on the productive and allocative sides, while SMESRS is the most technically-efficient one. On the other hand. BUTA is the most efficient one on the truly-productive and allocative sides, while SMESRS on the truly-technical side. Another important result is that the differences in true efficiency estimates among the three properties are considerably smaller than those in efficiency estimates. Besides. the most cost-efficient organizational type appears to be a local public corporation represented by SSC, which is also the most grossly-efficient property. These results suggest that a measure to sort out the impacts of external factors on the efficiency of rail transit properties is required to assess fairly it, and that a measure to restructure (establish) an existing(a new) rail transit property into a local public corporation(or authority) is required to improve its cost efficiency.