• Title/Summary/Keyword: Single Point Diamond Turning (SPDT)

Search Result 21, Processing Time 0.027 seconds

Ultra Precision Machining the Characteristics of IR Detection device HgCdTe (초정밀 가공기를 이용한 적외선 감지소자 HgCdTe의 절삭특성에 관한 연구)

  • Kim, Hyo-Sik;Yang, Sun-Choel;Kim, Myung-Sang;Kim, Geon-Hee;Lee, In-Je;Won, Jong-Ho;Cho, Byoung-Moo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.50-56
    • /
    • 2007
  • This study aims to find the optimal cutting conditions, when are IR Detection device HgCdTe is machined with diamond tool of diamond turning machine. Machining technique for HgCdTe with single point diamond turning tool is reported in this paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. It has been found HgCdTe has more and more important applications in the field of modern optics. The purpose of our research is to find the optimum machining conditions for ductile cutting of HgCdTe and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials.

  • PDF

Design and Manufacture of an Off-axis Aluminum Mirror for Visible-light Imaging

  • Zhang, Jizhen;Zhang, Xin;Tan, Shuanglong;Xie, Xiaolin
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.364-371
    • /
    • 2017
  • Compared to one made of glass, an aluminum mirror features light weight, compact design, low cost, and quick manufacturing. Reflective mirrors and supporting structures can be made from the same material, to improve the athermal performance of the system. With the rapid development of ultraprecise machining technologies, the field of applications for aluminum mirrors has been developed rapidly. However, most of them are rotationally symmetric in shape, and are used for infrared applications. In this paper, the design and manufacture of an off-axis aluminum mirror used for a three-mirror-anastigmat (TMA) optical system at visible wavelengths is presented. An optimized, lightweight design provides a weight reduction of more than 40%, while the surface deformation caused by earth's gravity can meet the required tolerance. The two pieces of an off-axis mirror can be diamond-turned simultaneously in one setup. The centrifugal deformation of the off-axis mirror during single-point diamond turning (SPDT) is simulated through the finite-element method (FEM). The techniques used to overcome centrifugal deformation are thoroughly described in this paper, and the surface error is reduced to about 1% of the original value. After post-polishing, the form error is $1/30{\lambda}$ RMS and the surface roughness is better than 5 nm Ra, which can meet the requirements for visible-light imaging.

The Characteristics of Ultra Precision Machining of Optical Crystal (광학소자의 초정밀절삭 특성에 관한 연구)

  • 김주환;박원규;김건희;원종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.529-532
    • /
    • 2003
  • Machining technique for optical crystals with single point diamond turning tool is reported in this paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency. poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials. As a result. the surface roughness is good when spindle speed is 200m/min. and teed rate is small. The influence of depth of cut is very small.

  • PDF

The Characteristics of Ultra Precision Machining of Optical Crystals for Infrared Rays (적외선용 광학소자의 초정밀 절삭특성)

  • Won, Jong-Ho;Park, Won-Kyoo;Kim, Ju-Hwan;Kim, Geon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.57-62
    • /
    • 2003
  • Machining technique for optical crystals with single point diamond turning tool is reported in tills paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. SPDT has been widely used in manufacturing optical reflectors of non-ferrous metals such as aluminum and copper which are easy to be machined for their proper ductility. But optical crystals being discussed here are characterized by their high brittleness which makes it difficult to obtain high quality optical surfaces on them. The purpose of our research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials. As a result, the cutting force is steady, the cutting force range is 0.05-0.08N. The surface roughness is good when spindle is above 1400rpm, and feed rate is small. The influence of depth of cut is very small.

  • PDF

The Characteristics of Ultra Precision Machining of Si and Ge (Si와 Ge의 초정밀 절삭특성)

  • 원종호;박상진;안병민;도철진;홍권희;김건희;유병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.775-778
    • /
    • 2000
  • Single point diamond turning technique fur optical crystals is reported in this paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. SPDT has been widely used in manufacturing optical reflectors of non-ferrous metals such as aluminum and copper which are easy to be machined for their proper ductility. But optical crystals being discussed here are characterized by their high brittleness which makes it difficult to obtain high quality optical surfaces on them. The purpose of cur research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials. As a result, the cutting force is steady, the cutting force range is 0.05-0.08N. The surface roughness is good when spindle is above 1400rpm. and feed rate is small. The influence of depth of cut is very small.

  • PDF

Micro-Crack Analysis from Ultra-Precision Diamond Turning of IR Optic Material (적외선 광학 소재의 초정밀 선삭가공시 발생하는 미세균열 연구)

  • Jeong, Byeongjoon;Kim, Geon-Hee;Myung, Tae Sik;Chung, Eui-Sik;Choi, Hwan-Jin;Yeo, In Ju;Jeon, Minwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.905-910
    • /
    • 2016
  • Infrared (IR) optic lens can be fabricated by a single point diamond turning (SPDT) machine without subsequent polishing process. However, this machining process often leaves micro-cracks that deteriorate the surface quality. In this work, we propose an experimental design to remove micro-cracks on IR lens. The proposed design gathered data between cutting process condition and Rt surface roughness. This is of great importance because the scale of micro-cracks is a few micrometer. Rt surface roughness is suitable for analyzing maximum peak height signals of the profile. The experimental results indicate that feed per revolution variable is one of the most dominant variable, affecting the generation micro-cracks on IR lens surfaces.

The characteristics of Ultra Precision Machine of Optical crystals for Infrared Ray (적외선 광학소자의 초정밀 절삭특성에 관한 연구)

  • Kim G.H.;Yang Y.S.;Kim H.S;Sin H.S.;Won J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.414-417
    • /
    • 2005
  • Single point diamond turning technique for optical crystals is studied in this paper. The main factors which are influential the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimal machining conditions for ductile cutting of optical crystals and to apply the SPDT technique to the manufacturing of ultra precision optical components of brittle material(Ge). Many technical challenges are being tried for the large space infrared telescope, which is one of the major objectives of the National Strategic Technology Road Map (NSTRM).

  • PDF

Design and Experimental Demonstration of Coaxially Folded All-reflective Imaging System

  • Xiong, Yupeng;Dai, Yifan;Chen, Shanyong;Tie, Guipeng
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.227-235
    • /
    • 2019
  • With slimmer, lighter and all-reflective imaging systems in high demand for consumer and military applications, coaxially folded optical image systems are widely considered because they can extend focal length and reduce track length. Most of these systems consist of multiple surfaces, and these surfaces are machined on one element or grouping processing on two elements. In this paper, we report and first experimentally demonstrate an all-aluminum all-reflective optical system which consists of two optical elements, with two high order aspherical surfaces in each element. The coaxially folded system is designed with Seidel aberration theory and advanced optimization with Zemax. The system is made of all-aluminum material processing by single point diamond turning (SPDT). On this basis, we completed the system integration and performed an imaging experiment. The final system has the advantages of short track length and long focal length and broad application prospects in the micro-unmanned aerial vehicle field.

Molding and Evaluation of Ultra-Precision Chalcogenide-Glass Lens for Thermal Imaging Camera Using Thermal Deformation Compensation (열변형 보정을 통한 열화상카메라용 초정밀 칼코지나이드 유리렌즈 몰드성형 및 특성 평가)

  • Cha, Du Hwan;Kim, Jeong-Ho;Kim, Hye-Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.91-96
    • /
    • 2014
  • Aspheric lenses used in the thermal imaging are typically fabricated using expensive single-crystal materials (Ge and ZnS, etc.) by the costly single point diamond turning (SPDT) process. As a potential solution to reduce cost, compression molding method using chalcogenide glass has been attracted to fabricate IR optic. Thermal deformation of a molded lens should be compensated to fabricate chalcogenide aspheric lens with form accuracy of the submicron-order. The thermal deformation phenomenon of molded lens was analyzed ant then compensation using mold iteration process is followed to fabricate the high accuracy optic. Consequently, it is obvious that compensation of thermal deformation is critical and useful enough to be adopted to fabricate the lens by molding method.

Design of Linear Astigmatism Free Three Mirror System (LAF-TMS) for Sky Monitoring Programs

  • Park, Woojin;Pak, Soojong;Chang, Seunghyuk;Kim, Sanghyuk;Kim, Dae Wook;Lee, Hanshin;Lee, Kwangjo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.88.1-88.1
    • /
    • 2017
  • We report a novel design of the "linear astigmatism-free" three mirror system (LAF-TMS). In general, the linear astigmatism is one of the most dominant aberration degrading image qualities in common off-axis systems. The proposed LAF-TMS is based on a confocal off-axis three mirror system, where higher order aberrations are minimized via our numerical optimization. The system comprises three pieces of aluminum-alloy freeform mirrors that are feasible to be fabricated with current single-point diamond turning (SPDT) machining technology. The surface figures, dimensions, and positions of mirrors are carefully optimized for a LAF performance. For higher precision-positioning mechanism, we also included alignment parts: shims (for tilting) and L-brackets (for decentering). Any possible mechanical deformation due to assembly process as well as 1-G gravity, and its influence on optical performances of the system are investigated via the finite element (FE) analysis. The LAF-TMS has low f-number and a wide field of view, which is promising for sky monitoring programs such as supernova surveys.

  • PDF