• 제목/요약/키워드: Single Point Diamond Turning (SPDT)

검색결과 21건 처리시간 0.027초

초정밀 단일점 다이아몬드 터닝을 이용한 비구면 금속 부반사경 가공 (Ultra-precision single point diamond turning (SPDT) on an aspheric metal secondary mirror)

  • Kim, E. D.;H. S. Yang;Kim, G-H.
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2001년도 제12회 정기총회 및 01년도 동계학술발표회
    • /
    • pp.96-97
    • /
    • 2001
  • A 110 mm diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fabricated by ultra-precision single point diamond turning (SPDT) . Without a conventional polishing process, the surface texture of R$\sub$a/=2.8 nm, and the form error of R$\sub$a/=0.05 λ has been stably achieved In a laboratory condition. (omitted)

  • PDF

광학 응용을 위한 다이아몬드 터닝 가공 (Optical Application of Diamond Turning Process)

  • 이봉주;김대중;정상화;박순섭;김상석;김정호;유영문;김주하
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1881-1884
    • /
    • 2003
  • Diamond turning machines have, been used for the processing of surface like a mirror with the control scheme of minimizing shape error, Ultra-precision diamond fuming is applied to produce highly precision optical components required not only a high machining accuracy but also a good surface roughness. Al-6061 is widely used as optical parts such as laser reflector's mirror or multimedia instrument. In this study, thermal-imaged Al flat mirrors are fabricated by SPDT. The surface roughness 3.472 nm Ra, power 2 fringe(at 632.8 nm) and irregularity 1 fringe(at 632.8 nm) for form waviness of thermal-imaged Al flat mirror are very satisfied to the required specification in industry.

  • PDF

다이아몬드 터닝머신을 이용한 알루미늄반사경의 절삭특성 (A Study of Aluminum Reflector Manufacturing in Diamond Turning Machine)

  • 김건희;고준빈;김홍배;원종호
    • 한국공작기계학회논문집
    • /
    • 제11권4호
    • /
    • pp.1-5
    • /
    • 2002
  • A 110 m diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fsbricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an A1 substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of Ra=λ/12(λ=632.8nm) has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated A1 alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

초정밀가공기를 이용한 알루미늄반사경의 절삭특성 (A Study of Aluminum reflector manufacturing in diamond turning machine)

  • 김건희;도철진;홍권희;유병주;원종호;김상석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1125-1128
    • /
    • 2001
  • A 110mm diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fabricated by ultra-precision single point diamond turning(SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an Al substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of Ra=λ/12(λ=632nm) has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated Al alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

  • PDF

Fabrication of Freeform Aluminum mirrors for Wide Field Infrared Telescopes

  • Jeong, Byeongjoon;Gwak, Jeongha;Pak, Soojong;Kim, Geon Hee;Lee, Kwang Jo;Park, Junbeom;Lee, Hye-In;Park, Woojin;Ji, Tae-Geun
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.57.3-58
    • /
    • 2017
  • Single Point Diamond Turning (SPDT) is a cost-effective technique to fabricate metallic mirrors. In particular, the servo-assisted diamond turning option is highly useful for the fabrication of freeform surfaces. However, the SPDT process leaves periodic tool marks on machined mirror surfaces, leading to undesirable diffraction effect, as well as the deviation of input beam. In order to solve this problem, we propose new SPDT machining conditions to minimize tool marks. We will also show the results from optical measurement and Power Spectral Density (PSD) analysis to evaluate the expectable performance for applications in wide field infrared telescopes.

  • PDF

광 정보저장용 픽업 렌즈의 다이아몬드 터닝 가공 (Diamond turning of pick-up lens for optical application)

  • 박순섭;김대중;이봉주;김상석;김정호;유영문;김주하
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.525-528
    • /
    • 2003
  • The aspherical lens are used as objective lens of optical pickup. The sample product is made before manufacturing the injection mould of lens to examine the design factor. The optimum cutting conditions of the main spindle speed, the depth of cut, the feed rate are found when we cut PMMA and PC lens sample with ultra-precision SPDT. The demanded surface roughness 10 nm Ra. aspherical form error 0.5 ${\mu}{\textrm}{m}$ P-V for aspherical lens of optical data storage device are satisfied for PMMA. but not satisfied for PC.

  • PDF

SPDT를 이용한 대구경 Collimation Reflector 가공 연구 (A study on the manufacture of Large Collimation Reflector using SPDT)

  • 김건희;홍권희;김효식;박지영;박순섭;원종호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.897-900
    • /
    • 2002
  • The collimation mirror will be used for thermal vacuum testing of spacecraft. The reflection mirror system to generate parallel beam inside the thermal vacuum chamber. A 600mm diameter aspheric Collimation mirror was fabricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machining, but not polishable due to its ductility. Aspheric large collimation reflector without a conventional polishing process, the surface roughness of 10nmRa, and the from error of $\lambda/2 ~\lambda/4(\lambda$ =632.8 nm) for reference curved surface 600 mm has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of A16061-T651 and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

  • PDF

다이아몬드 터닝머신을 이용한 금속 비구면 초정밀 절삭특성 (A study of metal aspheric reflector manufacturing in diamond turning machine)

  • 김건희;도철진;홍권희;유병주;원종호;김상석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.83-87
    • /
    • 2001
  • A 110 mm diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fabricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an Al substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of $Ra={\lambda}/12({\lambda}=632nm)$ has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated Al alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

  • PDF

단결정 실리콘의 초정밀가공 (Nano-turning of single crystal silicon)

  • 김건희;도철진;홍권희;유병주;원종호;박상진;안병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.939-942
    • /
    • 2000
  • Single point diamond turning technique for optical crystals is reported in this paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle material.

  • PDF

칼코게나이드 유리 소재의 PGM 가공 렌즈를 사용한 저가의 적외선 광학계 설계와 제작 (Design and Fabrication of Low Cost Infrared Optical System Using Precision Glass Molding Lens Made by Chalcogenide Glass)

  • 오승은;이선규;최중규;송국현;백종식
    • 한국광학회지
    • /
    • 제23권4호
    • /
    • pp.154-158
    • /
    • 2012
  • 본 논문에서는 적외선 광학장비의 가격 경쟁력을 확보하고자 상대적으로 저렴한 비용으로 제작이 가능한 PGM(Precision Glass Molding) 가공 렌즈로 구성된, 비냉각형 검출기용 적외선 광학계를 설계 및 제작하였다. PGM 가공이 가능하도록 광학계의 모든 렌즈에 칼코게나이드 유리(Chalcogenide Glass) 소재를 사용하였으며, 자체 비열화가 구현되도록 설계하였다. 또한 기존 가공법인 SPDT(Single Point Diamond Turning) 방법으로 제작된 렌즈로, 동일한 광학계를 구성하여 PGM 가공 렌즈의 성능 측정에 사용하였다. 제작된 두 광학계의 변조전달함수(MTF) 측정 결과와 실제 영상의 촬영 결과를 비교하여 분석한 결과, 가공 방법에 따른 렌즈의 성능 차이는 그리 크지 않음을 확인할 수 있었다. 따라서 향후 PGM 가공 렌즈의 사용이 증가하면, 적외선 광학장비의 가격 경쟁력이 향상될 것으로 기대된다.