• 제목/요약/키워드: Single Phase converter

검색결과 512건 처리시간 0.822초

Series-Parallel Connected Capacitor Type Boost Converter for a Single-Phase SRM

  • Lee, Dong-Hee;Liang, Jiang;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • 제10권4호
    • /
    • pp.388-395
    • /
    • 2010
  • An active boost converter for a single phase SRM using series-parallel connected capacitors is proposed in this paper. The proposed active boost converter has two diodes and one power switch with an anti-parallel diode and one additional boost capacitor. The additional boost capacitor could be series or parallel connected to the dc-link capacitor to produce proper excitation and demagnetization voltage. The proposed active boost converter can easily achieve a fast excitation and demagnetization from the capacitor connection. In this paper, series and parallel connected converters are reviewed, and the detailed operating modes as well as the voltage characteristics of the proposed converter are analyzed. The simulation and experimental results shows the effectiveness of the proposed active boost converter.

Characteristics of Voltage Sag/Swell Compensator Utilizing Single-Phase Matrix Converter

  • Yamamoto, Kichiro;Ikeda, Keisuke;Tsurusaki, Yu;Ikeda, Minoru
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권4호
    • /
    • pp.447-453
    • /
    • 2013
  • Compensating characteristics of a voltage sag/swell compensator utilizing single-phase matrix converter is examined. First, system configuration and operation for both voltage sag and swell are described. Next, in order to suppress pulsations of the source voltage, a countermeasure using low pass filter and all pass filter is introduced. Then, compensating characteristics of the compensator are investigated for R-L load by simulation. Finally, the validity of the simulated results is confirmed by the experimental results.

Real time Implementation of SHE PWM in Single Phase Matrix Converter using Linearization Method

  • Karuvelam, P. Subha;Rajaram, M.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1682-1691
    • /
    • 2015
  • In this paper, a real time implementation of selective harmonic elimination pulse width modulation (SHEPWM) using Real Coded Genetic Algorithm (RGA), Particle Swarm Optimization technique (PSO) and a new technique known as Linearization Method (LM) for Single Phase Matrix Converter (SPMC) is designed and discussed. In the proposed technique, the switching frequency is fixed and the optimum switching angles are obtained using simple mathematical calculations. A MATLAB simulation was carried out, and FFT analysis of the simulated output voltage waveform confirms the effectiveness of the proposed method. An experimental setup was also developed, and the switching angles and firing pulses are generated using Field Programmable Gate Array (FPGA) processor. The proposed method proves that it is much applicable in the industrial applications by virtue of its suitability in real time applications.

Comparative Analysis of Efficiency and Power Density of Single-Phase and 3-Level Boost Converters for PV System (태양광 시스템용 단상 및 3-레벨 부스트 컨버터의 효율 및 전력밀도 비교 분석)

  • Kim, Chul-Min;Kim, Jong-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제25권2호
    • /
    • pp.127-132
    • /
    • 2020
  • In this study, single-phase and three-level boost converters applied to the photovoltaic system were compared and analyzed in terms of efficiency and power density according to the input voltage and load conditions. For accurate analysis of efficiency, the losses in each device of the single-phase and three-level boost converters were derived using mathematical equations and simulations by using the PSIM thermal module. Then, the losses were compared with the efficiency confirmed through the actual experiments. Results confirmed that the efficiency and power density can be improved by applying the three-level boost converter to the system according to the selection of the switching frequency.

A Single-Input Single-Output Approach by using Minor-Loop Voltage Feedback Compensation with Modified SPWM Technique for Three-Phase AC-DC Buck Converter

  • Alias, Azrita;Rahim, Nasrudin Abd.;Hussain, Mohamed Azlan
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.829-840
    • /
    • 2013
  • The modified sinusoidal pulse-width modulation (SPWM) is one of the PWM techniques used in three-phase AC-DC buck converters. The modified SPWM works without the current sensor (the converter is current sensorless), improves production of sinusoidal AC current, enables obtainment of near-unity power factor, and controls output voltage through modulation gain (ranging from 0 to 1). The main problem of the modified SPWM is the huge starting current and voltage (during transient) that results from a large step change from the reference voltage. When the load changes, the output voltage significantly drops (through switching losses and non-ideal converter elements). The single-input single-output (SISO) approach with minor-loop voltage feedback controller presented here overcomes this problem. This approach is created on a theoretical linear model and verified by discrete-model simulation on MATLAB/Simulink. The capability and effectiveness of the SISO approach in compensating start-up current/voltage and in achieving zero steady-state error were tested for transient cases with step-changed load and step-changed reference voltage for linear and non-linear loads. Tests were done to analyze the transient performance against various controller gains. An experiment prototype was also developed for verification.

Analysis of the Admittance Component for Digitally Controlled Single-Phase Bridgeless PFC Converter

  • Cho, Younghoon;Mok, Hyungsoo;Lai, Jih-Sheng
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.600-608
    • /
    • 2013
  • This paper analyzes the effect of the admittance component for the digitally controlled single-phase bridgeless power factor correction (PFC) converter. To do this, it is shown how the digital delay effects such as the digital pulse-width modulation (DPWM) and the computation delays restrict the bandwidth of the converter. After that, the admittance effect of the entire digital control system is analyzed when the bridgeless PFC converter which has the limited bandwidth is connected to the grid. From this, the waveform distortion of the input current is explained and the compensation method for the admittance component is suggested to improve the quality of the input current. Both the simulations and the experiments are performed to verify the analyses taken in this paper for the 1 kW bridgeless PFC converter prototype.

Analysis and Simulation of Multi-Level Converter by means of Multiple Single Phase Combination Control (단상 다중 조합제어 Multi-Level 컨버터의 해석과 시뮬레이션)

  • Ahn, I.M.;Chun, J.H.;Lee, Y.H.;Suh, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.355-357
    • /
    • 1999
  • Single-Phase multi-level AC-DC converter that is composed of diode bridge and switch is proposed. The number of the supply current level is depending on the individual current level of the converter. A converter circuit, the number of the level is equal to $2^{M+1}-1$, where M is the number of Switching Converter. The proposed circuit has converter with 31 current levels. When the number of current level is increased, smoother sinusoidal waveform can be obtained directly and it is possible to control the supply current almost continuously from zero to maximum without generating high voltage step changes as pulse with modulation technology. The technique illustrates its validity and effectiveness through the PSIM.

  • PDF

A High Efficiency Single-Phase AC-DC Boost Converter for Power Factor Correction (역률개선을 위한 고효율 교류-직류 승압형 변환기)

  • Park, Hae-Dong;Yoon, Duck-Yong;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.117-120
    • /
    • 1998
  • This paper proposes a new high efficiency single-phase AC-DC boost converter for power factor correction. Lossless commutation circuit is interposed in the proposed converter for soft-switching. Due to this commutation circuit, the converter operates in 9 mode. In spite of changing input voltage and load, It attracts a constant DC output voltage because of the PWM control scheme using both the output voltage feedback and the input voltage feedforward. The converter is suitable for high power applications and operates in continuous conduction mode. In this paper, a 2.4[kW] converter is designed and simulated.

  • PDF

Basic Modeling and Analysis for AC Railway System based on BTB Voltage Source Converter (BTB 전압형 컨버터 기반의 전기철도 급전변전 시스템의 기본 모델링 및 해석)

  • Yoo, Hyeong-Jun;Kim, Hak-Man;Jung, Ho-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제61권11호
    • /
    • pp.1737-1742
    • /
    • 2012
  • The scott transformer is used to supply single-phase power to the AC railway system. Since the scott transformer is a passive facility, it cannot regulate load-side voltage according to load change. Meanwhile, the Voltage Source Converter (VSC) is able to convert the voltage and control active and reactive power. In this paper, the feasibility of a AC railway system based on Back-to-Back (BTB) VSC which is composed of a rectifier, a DC-DC converter, a inverter, has been proposed. A three-phase to single-phase BTB VSC is modeled. The proposed AC railway system based on BTB VSC is tested on Matlab/Simulink.

Design and Implementation of Low Cost Boost Type Single-Phase Inverter System for Compensation of Voltage Sag (순간전압강하 보상을 위한 저가의 승압형 단상 인버터 시스템의 설계 및 구현)

  • Lee, Seung-Yong;Hong, Soon-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.85-92
    • /
    • 2012
  • In this paper, a 300[W] class boost type single-phase inverter system which can compensate voltage sag on source side is designed and implemented. This system is a two-stage conversion system composed of a boost converter and a PWM inverter. If the voltage sag has appeared at the point of common coupling, the boost converter would be operated to compensate it. The boost converter and the inverter were constructed on single smart power module(SPM) to implement low cost system. The system is designed for that the THD of output voltage is below 5[%]. Finally, the validity of the design for the inverter system is verified by both simulations and experiments.