• 제목/요약/키워드: Single Particle

검색결과 887건 처리시간 0.028초

Approximation of most penetrating particle size for fibrous filters considering Cunningham slip correction factor

  • Jung, Chang Hoon;Yoon, Young Jun;Um, Junshik;Lee, Seoung Soo;Lee, Ji Yi;Chiao, Sen;Kim, Yong Pyo
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.439-445
    • /
    • 2020
  • In the estimation of the aerosol single fiber efficiency using fibrous filters, there is a size range, where the particles penetrate most effectively through the fibrous collectors, and corresponding minimum single fiber efficiency. For small particles in which the diffusion mechanism is dominant, the Cunningham slip correction factor (Cc) affects the single fiber efficiency and the most penetrating particle size (MPPS). Therefore, for accurate estimation, Cc is essential to be considered. However, many previous studies have neglected this factor because of its complexity and the associated difficulty in deriving the appropriate parameterization particularly for the MPPS. In this study, the expression for the MPPS, and the corresponding expression for the minimum single fiber efficiency are analytically derived, and the effects of Cc are determined. In order to accommodate the slip factor for all particle-size ranges, Cc is simplified and modified. Overall, the obtained analytical expression for the MPPS is in a good agreement with the exact solution.

단일입자 질량분석기를 애용한 서브마이크론 입자의 특성화(I) - 입자의 크기와 질량분광신호의 비선형성 - (Characterization of submicron Particles Using a Single Particle Mass Spectrometer(I) - Non - Linear Correlation Between Particle Size and Mass Spectra Signals -)

  • ;이동근
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.453-459
    • /
    • 2005
  • In this paper, we are proposing a robust tool which is capable of measuring the size and elemental composition of submicron particles from twenty to several hundreds nanometers at the same time, i.e., named Single Particle Mass Spectrometer (SPMS). The home-made SPMS employs a laser ablation/multi-photon ionization method to tear a nanoparticle into the constituent elemental ions. One thing different from the conventional Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) is the power of the ionization laser. Much strong laser used in this work makes it possible to generate elemental ions rather than molecular ions from a nanoparticle. Also the use of high power laser may guarantee a complete ionization of a particle, which was confirmed by the existence of multiple charged ions. If a particle is evaporated/ionized completely and detected through electric field-free TOF tube without any loss, we can extract the original particle volume from the measured total ion numbers. Collecting a number of particles mass spectra, we get a database of size and elemental composition of nanoparticles, with which we may take a took into any kinds of chemical reaction occurring at nanoscale. Several issues related to size estimation by SPMS will be discussed.

Experimental study on single- and two-phase flow behaviors within porous particle beds

  • Jong Seok Oh;Sang Mo An;Hwan Yeol Kim;Dong Eok Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1105-1117
    • /
    • 2023
  • In this study, the pressure drop behavior of single- and two-phase flows of air and water through the porous beds filled with uniform and non-uniform sized spherical particles was examined. The pressure drop data in the single-phase flow experiments for the uniform particle beds agreed well with the original Ergun correlation. The results from the two-phase flow experiments were analyzed using numerical results based on three types of previous models. In the experiments for the uniform particle beds, the data on the two-phase pressure drop clearly showed the effect of the flow regime transition with a variation in the gas flow rate under stagnant liquid condition. The numerical analyses indicated that the predictability of the previous models for the experimental data relied mainly on the sub-models of the flow regime transitions and interfacial drag. In the experiments for the non-uniform particle beds, the two-phase pressure loss could be predicted well with numerical calculations based on the effective particle diameter. However, the previous models failed to accurately predict the counter-current flooding limit observed in the experiments. Finally, we propose a relation of falling liquid velocity into the particle bed by gravity to appropriately simulate the CCFL phenomenon.

단일 입자 질량분석기의 효과적인 이온검출을 위한 이온계의 이론적인 설계 (Theoretical Design of Ion Optics for Effective Ion Detection in Single Particle Mass Spectrometer)

  • 조성우;이동근
    • 대한기계학회논문집B
    • /
    • 제30권7호
    • /
    • pp.638-645
    • /
    • 2006
  • Recently, we reported that significant ion loss occurred prior to its detection in the conventional single particles mass spectrometry and more seriously the loss is ion-kinetic-energy-dependent. These lead to significant error in the measured chemical composition of nanoparticles. Here we attempted to design a novel ion optics that is capable of 100% detection of ions generated from single nanoparticle. Using a commercial software SIMION, we simulated the trajectories of ions launched at different speeds inside the previous single particle mass spectrometer We tested how affect changes in shape of repelling plate, adding Einzel lens, substitution of tube electrode between extraction and acceleration grids. As a results, we could find a best design by assembling the trials in the present condition.

Preparation of particle-size-controlled SiC powder for single-crystal growth

  • Jung, Eunjin;Lee, Myung Hyun;Kwon, Yong Jin;Choi, Doo Jin;Kang, Seung Min;Kim, Younghee
    • 한국결정성장학회지
    • /
    • 제27권1호
    • /
    • pp.57-63
    • /
    • 2017
  • High-purity ${\beta}-SiC$ powders for SiC single-crystal growth were synthesized by direct carbonization. The use of high-purity raw materials to improve the quality of a SiC single crystal is important. To grow SiC single crystals by the PVT method, both the particle size and the packing density of the SiC powder are crucial factors that determine the sublimation rate. In this study, we tried to produce high-purity ${\beta}-SiC$ powder with large particle sizes and containing low silicon by introducing a milling step during the direct carbonization process. Controlled heating improved the purity of the ${\beta}-SiC$ powders to more than 99 % and increased the particle size to as much as ${\sim}100{\mu}m$. The ${\beta}-SiC$ powders were characterized by SEM, XRD, PSA, and chemical analysis to assess their purity. Then, we conducted single-crystal growth experiments, and the grown 4H-SiC crystals showed high structural perfection with a FWHM of about 25-48 arcsec.

단일 광경로 스캔PIV기법의 개발 (Development of single optical axis scanning PIV method)

  • 김형범;정인영;이상혁;류청환
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.6-10
    • /
    • 2005
  • PIV(Particle image velocimetry) presents the flow velocity of whole flow fields in a fraction of a second. Conventional PIV method uses two optical axis configuration during the image grabbing process. That is, the illumination plane and the recording plane must be parallel. This configuration is very natural to grab the whole field without the image distortion. In the real problem, it is often to meet the situation which this configuration is hard to be fulfilled. In this study, we developed new PIV method which only uses single optical axis to grab the particle images. This new PIV method become possible by utilizing the scanning method similar to echo PIV technique. One particle image of scanning PIV consists of scanned several line images and by repeating this scanning process, two particle images were grabbed and processed to produce the velocity vectors.

  • PDF

Low-Z Particle Electron Probe X-ray Microanalysis법을 이용한 2001년 ACE-Asia 집중 측정 기간 중 제주도 고산에서의 입자상 물질의 특성분석 (Single Particle Characterization of Aerosol Particles Collected at Jeju Island, Korea, During 'ACE-Asia' Intensive Observation Period, Using Low-Z Particle Electron Probe X-ray Microanalysis)

  • 안용훈;김혜경;노철언
    • 한국대기환경학회지
    • /
    • 제20권6호
    • /
    • pp.811-821
    • /
    • 2004
  • Low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA) was applied to characterize aerosol particles collected at Gosan in Jeju island during an IOP (intensive observation period) for an international ACE-Asia project in April, 2001. Various types of atmospheric particles such as organics, carbon-rich, aluminosilicates, silicon oxide, sodium nitrate, sodium chloride, and ammonium sulfate were observed. The reacted sea salt particles such as sodium nitrate were the most abundantly encountered, but original sea salt particles were rarely observed. Since the Low-Z particle EPMA can provide quantitative information on the chemical composition of aerosol particles, many different particle types on the basis of their chemical compositions were observed and identified. In this study, it is demonstrated that the Low-Z particle EPMA can provide detailed information on the chemical compositions for the aerosol particles collected for six consecutive days in April, 2001, at Gosan super-site.

Scale Invariant Single Face Tracking Using Particle Filtering With Skin Color

  • Adhitama, Perdana;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • 제9권3호
    • /
    • pp.9-14
    • /
    • 2013
  • In this paper, we will examine single face tracking algorithms with scaling function in a mobile device. Face detection and tracking either in PC or mobile device with scaling function is an unsolved problem. Standard single face tracking method with particle filter has a problem in tracking the objects where the object can move closer or farther from the camera. Therefore, we create an algorithm which can work in a mobile device and perform a scaling function. The key idea of our proposed method is to extract the average of skin color in face detection, then we compare the skin color distribution between the detected face and the tracking face. This method works well if the face position is located in front of the camera. However, this method will not work if the camera moves closer from the initial point of detection. Apart from our weakness of algorithm, we can improve the accuracy of tracking.

Low-Z particle EPMA 단일입자 분석법을 이용한 지하철 승강장에서 미세입자 특성 분석 (Characterization of Aerosols Collected at a Subway Station Platform Using Low-Z Particle Electron Probe X-ray Microanalysis)

  • 황희진;오미정;강선이;김혜경;노철언
    • 한국대기환경학회지
    • /
    • 제21권6호
    • /
    • pp.639-647
    • /
    • 2005
  • A single particle analytical technique, named low-Z particle electron probe X-ray microanalysis (EPMA), was applied to characterize samples collected at a subway station and ambient samples in Seoul. According to their chemical composition, many distinctive particle types were identified. For samples collected at the subway station platform, the major chemical species are carbon-rich, organic, aluminosilicates (AlSi), AlSi/C, AlSi/$CaCO_{3},\;CaCO_{3},\;SiO_{2},\;and\;Fe_{2}O_{3}$. For outdoor samples, carbon-rich, organic, AlSi, $CaCO_{3},\;SiO_{2},\;NaNO_{3},\;(Na,Mg)NO_{3},\;Na(CO_{3},NO_{3},SO_{4}),\;and\;(NH_{4})_2SO_4$, are abundantly encountered. Samples collected at the subway station show very high contents of $Fe_{2}O_{3}$, both in coarse and fine fractions, which come from brake block, subway train wheel, electric contact materials, etc. It is demonstrated that the single-particle characterization using this low-Z particle EPMA technique provided detailed information on various types of chemical species in indoor and outdoor samples.

Single Plane Illumination Microscopy - MicroPIV를 이용한 버블 유동에서 외부 자계 영향을 받는 자성입자 가시화 (Flow Visualization of Magnetic Particles under the external magnetic field in bubbly flow using Single Plane Illumination Microscopy - MicroPIV)

  • 이창제;조경래;이상엽
    • 한국가시화정보학회지
    • /
    • 제19권1호
    • /
    • pp.36-42
    • /
    • 2021
  • This study measured the velocity of magnetic particles inside the power generation using external heat sources. Single Plane Illumination Microscopy (SPIM) was used to measure magnetic particles that are simultaneously affected by bubbly flow and magnetic field. It has the advantage of reducing errors due to particle superposition by illuminating the thin light sheet. The hydraulic diameter of the power generation is 3mm. Its surface is covered with a coil with a diameter of 0.3 mm. The average diameter of a magnetic particle is 200nm. The excitation and emission wavelengths are 530 and 650nm, respectively. In order to find out the flow characteristics, a total of four velocity fields were calculated in wide and narrow gap air bubbles, between the wall and the air bubble and just below the air bubble. Magnetic particles showed up to 8.59% velocity reduction in the wide gap between air bubbles due to external magnetic field.