• Title/Summary/Keyword: Single Jet

Search Result 269, Processing Time 0.026 seconds

A Study on Dynamic Characteristics Analysis of Hybrid Wind Power Blades according to Material Properties Method (물성치 적용 기법에 따른 하이브리드 풍력 블레이드 동적특성 해석에 관한 연구)

  • Kang, Byong-Yun;Han, Jeong-Young;Hong, Cheol-Hyun;Moon, Byong-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.5-11
    • /
    • 2012
  • In this paper, the heat transfer coefficient measurement techniques using TSP(temperature sensitive paint) were introduced and the results of a comparative study on the heat transfer coefficient measurement by steady state and transient TSP techniques were discussed. The distributions of heat transfer coefficient by a single $60^{\circ}$ inclined impingement jet on a flat surface were measured by both techniques. Tested Reynolds number based on the jet diameter (d) was 30,000 and the distance between jet exit and target plate (L) was fixed at 10d. Results showed that the measured Nusselt number by both techniques indicated significant difference except near the center of impingement jet. Also, the heat transfer coefficients measured by the transient TSP technique were affected by the reference temperature of the jet. Based on the measured data, characteristics of both TSP techniques were analyzed and suggestions for applying them were also given.

Proving the Evolution of Relativistic Jet of Radio-Loud AGN, OVV 1633+382

  • Ro, Hyunwook;Sohn, Bong Won;Chung, Aeree;Krichbaum, Thomas P.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.37.1-37.1
    • /
    • 2015
  • It is suggested that relativistic jets associated with active galactic nuclei (AGNs) can have great impacts on the evolution of the host galaxy. However, the physical properties of AGN jets including the formation mechanism are not well known to date, and hence the AGN feedback on the host galaxy is yet poorly understood. OVV 1633+382 as a highly variable AGN source (a.k.a. blazer) with a compact core and very well developed jet components is an excellent laboratory to study the jet formation mechanism of radio-loud AGN. Near 2002, a major flare was reported at mm wavelength with a dramatic increase of the flux, which is likely to be followed by a dense and bright outflow. In order to probe the evolution of the innermost region of this radio-loud AGN, we have monitored using the Very Large Baseline Array (VLBA) and the Effelsberg 100m single-dish radio telescope in 12 epochs from 2002 and 2005. The observations were conducted at 22, 43 and 86 GHz in full polarization mode. In this work, we present the intensity and spectral index maps at 22 and 43 GHz from our monitoring observations. We probe the kinematics and geometry of individual jet components to discuss the evolution of the jet.

  • PDF

Formulation and Evaluation of Glass-Ceramic Ink for Digital Ink-jet Printing (디지털 프린팅용 글래스-세라믹 복합 잉크 제조 및 특성 평가)

  • Kwon, Jong-Woo;Lee, Jong-Heun;Hwang, Kwang-Taek;Kim, Jin-Ho;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.583-589
    • /
    • 2017
  • Ceramic ink-jet printing has become a widespread technology in ceramic tile and ceramicware industries, due to its capability of manufacturing products on demand with various designs. Generally, thermally stable ceramic inks of digital primary colors(cyan, magenta, yellow, black) are required for ink-jet printing of full color image on ceramic tile. Here, we synthesized an aqueous glass-ceramic ink, which is free of Volatile organic compound(VOC) evolution, and investigated its inkjet printability. $CoAl_2O_4$ inorganic pigment and glass frit were dispersed in aqueous solution, and rheological behavior was optimized. The formulated glass-ceramic ink was suitably jetted as single sphere-shaped droplets without satellite drops. After ink-jet printing and firing processes, the printed glass-ceramic ink pattern on glazed ceramic tile was stably maintained without ink spreading phenomena and showed an improved scratch resistance.

Experimental Study on Flows within an Unshrouded Centrifugal Impeller Passage(I)-At the Shockless Condition- (개방형 원심회전차의 내부유동장에 관한 실험적 연구(1)-무충돌 유입조건에서-)

  • 김성원;조강래
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2261-2270
    • /
    • 1995
  • Flow patterns were measured in an unshrouded centrifugal impeller. The flow rate in measurements was fixed at the value corresponding to a nearly zero incidence at the blade inlet. By using a single slanted hot-wire probe and a Kiel probe mounted on the impeller hub disk, the 3-D relative velocities and the rotary stagnation pressures were measured in seven circumferential planes from the inlet to the outlet of the impeller rotating at 700rpm, which diameter is 0.39 meter, and the static pressures and the slip factor at the impeller outlet were calculated from the measured values. From the measured data, the primary/secondary flows, the leakage flows, the wake-jet flows, static pressure distribution on blade surfaces and the wake production mechanism in the impeller passage were investigated.

Performance Variation of the Air Curtain for Various Discharge Angles in Feating Space (난방공간에서 에어커튼의 토출각도 변화에 따른 성능 변화)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.2
    • /
    • pp.57-63
    • /
    • 2010
  • Air curtains are widely used for gates of shopping mall, warehouse, cold stores and refrigerated display cabinets. The purpose of the air curtain is to reduce the infiltration of outdoor air and heat loss from the air conditioning space to ambient air. The discharge angle of air curtain is very important as the sealing efficiency is affected by it. This paper presents a performance of single jet air curtain in heating space when the discharge angle of nozzle changes. A numerical simulation is used to study the influence of various parameters on the efficiency of the downward-blowing air curtain device which is installed inside of the wall above the door. The performance of the air curtain is evaluated by sealing efficiency which provides the assessment of the energy savings. A condition of discharge angle that has the highest sealing efficiency is proposed.

Characteristics of methane non-premixed multiple jet flames (메탄 비예혼합 상호작용 화염의 특성)

  • Lee, Byeong-Jun;Kim, Jin-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1365-1370
    • /
    • 2004
  • It has been reported that if eight small nozzles are arranged along the circle of 40 $^{\sim}$ 72 times the diameter of single nozzle, the propane non-premixed flames are not extinguished even in 200m/s, In this research, experiments were extended to the methane flame. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric center. The space between nozzles, s, the exit velocity and the role of the jet from the center nozzle were considered. On the contrary to the propane non-premixed case, the maximum blowout velocity for the methane diffusion flame was achieved when small amount of fuel is supplied through the center nozzle and s/d equals around 21. In the laminar region, the flame attached at the center nozzle anchored the outer lifted flames.

  • PDF

Numerical Study of Flame Structures and Conditional Statistics in Turbulent Spray Jet Combustion (난류분무제트연소에서의 화염구조와 조건평균 통계에 대한 수치적 연구)

  • Seo, Jaeyeob;Huh, Kang Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.46-52
    • /
    • 2012
  • 3D DNS is performed for n-heptane spray turbulent jet combustion. Diesel-like conditions are considered including single and multiple injections. Conditional statistics are obtained for multiple Lagrangian flame groups of sequentially evaporating fuel. Each fuel group represents the conditional statistics of an independent Lagrangian flame group. Sequentially evaporating fuel goes through different histories and residence times over the ignition delay period. Multiple flame groups are required for accurate description of combustion of a spray jet that goes through a long injection duration or multiple injections.

Prediction of downburst-induced wind pressure coefficients on high-rise building surfaces using BP neural network

  • Fang, Zhiyuan;Wang, Zhisong;Li, Zhengliang
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.289-298
    • /
    • 2020
  • Gusts generated by downburst have caused a great variety of structural damages in many regions around the world. It is of great significance to accurately evaluate the downburst-induced wind load on high-rise building for the wind resistance design. The main objective of this paper is to propose a computational modeling approach which can satisfactorily predict the mean and fluctuating wind pressure coefficients induced by downburst on high-rise building surfaces. In this study, using an impinging jet to simulate downburst-like wind, and simultaneous pressure measurements are obtained on a high-rise building model at different radial locations. The model test data are used as the database for developing back propagation neural network (BPNN) models. Comparisons between the BPNN prediction results and those from impinging jet test demonstrate that the BPNN-based method can satisfactorily and efficiently predict the downburst-induced wind pressure coefficients on single and overall surfaces of high-rise building at various radial locations.

NUMERICAL INVESTIGATION OF VORTICAL FLOW INDUCED BY A SYNTHETIC JET ACTUATOR (Synthetic Jet 주위 유도 와류에 대한 수치 해석)

  • Park, S.H.;Sa, J.H.;Yu, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.120-125
    • /
    • 2006
  • Piezoelectric actuators have been investigated for flow control in the field of fluid dynamics. Numerical simulation for a single diaphragm piezoelectric actuator operating in quiescent air is performed to investigate the complex flow field around the slot exit. A periodic velocity transpiration condition is applied to simulate the effect of the moving diaphragm. The computational results for the flow field around the slot exit agree well with the experimental data. The results also show that low pressure regions due to the vortex pairing cause non-monotonic variations in the vertical velocity.

  • PDF

Characteristics of Methane Non-Premixed Multiple Jet Flames (메탄 비예혼합 상호작용 화염의 특성)

  • Kim Jin Hyun;Lee Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.349-355
    • /
    • 2005
  • It has been reported that propane non-premixed interacting flames are not extinguished even in 210m/s if eight small nozzles are arranged along the imaginary circle of 40 ~ 72 times the diameter of single nozzle. In this research, experiments were extended to the methane flame. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric center. The space between nozzles, s, the exit velocity and the role of the jet from the center nozzle were considered. On the contrary to the propane non-premixed flame, small amount of fuel fed through the center nozzle makes the methane diffusion flame stable even at the choking conditions. In the laminar region, the flame at the center nozzle anchored the outer lifted flames.