• Title/Summary/Keyword: Single Fuel Droplet

Search Result 57, Processing Time 0.021 seconds

An Experimental Study About Interaction of Droplet Array Combustion (액적배열연소의 상호간섭에 관한 실험적 연구)

  • Kim, Heung-Sik;Baek, Seung-Wook;Park, Jun-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1355-1363
    • /
    • 2002
  • An experimental study was conducted to investigate the interaction phenomena of droplet array combustion in ambient environment. The droplet with 1 mm in diameter was supported from an optical fiber and ignited with a hot wire. Combustion lifetimes and burning rate constants were measured for fuel of nheptane according to parameters, which were junction and suspender spacings, and array configuration. Results show that the burning process considerably depends on the initial away configuration. The d$^2$-law is found to be correct when applied to both of the droplets in away and the single droplet. For separation distance of about 5mm, there exists a critical state. So the transition from a merged flame to separated flames occurs and burning velocity is much faster than before. Combustion lifetime of the lower droplet is shorter than that of the upper droplet in the two-dimensional arrays combustion. Burning rate constants of the droplets in arrays are smaller than that of the single droplet, while they become higher as separation distance increases. Combustion lifetimes of the droplets in arrays are longer than that of the single droplet and decrease as separation distance increase. It is concluded that the array configuration and the mergedness of the flame are the most important factors governing multi-droplet combustion.

Combustion of ethyl alcohol and kerosene fuel droplets in atmospheric pressure (대기압하에서의 에틸알코올과 케로신 연료액적의 연소에 관한 연구)

  • Han, jae-seob;Kim, seon-jin;Park, bong-yeop;Kim, yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.71-78
    • /
    • 2001
  • This paper presents the results of an experimental investigation on the combustion of single droplets arrays of Ethyl alcohol and kerosene fuel droplets in atmospheric pressure. The initial droplet diameters, d$_{0}$, were nominally 1.3~1.8mm, and inter-droplet separation distance l(l/do=1.31~2.60). experimental results indicate that burning rate constants(K) of ethyl alcohol and kerosene droplets were independent of initial droplet size as 0.0083, 0.0095 $\textrm{cm}^2$/sec. For 1-D droplet array's kerosene fuel droplet, burning rate constants(K) decreases with decreasing normalized inter-droplet distance. Normalized inter-droplet distance has stronger effect on 2nd fuel droplet than 3rd fuel droplet. When normalized inter-droplet distance is larger than 2.60, the effect of droplet spacing on droplet life is very small.

  • PDF

Effect of droplet length on a burning constant rate of suspended droplet (액적간격이 고정액적의 연소율상수에 미치는 영향에 관한 연구)

  • Han, Jae-Seob;Kim, Seon-Jin;Kim, Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.47-54
    • /
    • 2002
  • This paper presents the results of an experimental investigation on the combustion of single droplets and 1-D droplet arrays of jet A-1 fuel droplets in atmospheric pressure. Experimental results indicate that burning rate constants$({\kappa}_c)$ of jet A-1 fuel droplets were independent of initial droplet size as $0.915{mm}^2$/sec. It was acquired a general relationship expressing the variation of $d^2$ with time for droplet burning For 1-D droplet arrays $(l/d_o$=1.208{\sim}2.922)$/TEX>, the burning rate constant ${\kappa}_c$ decreased with decreasing droplet spacing $l/d_o$ and, The effect on combustion rate constant ${\kappa}_c$ was stronger to second fuel droplet than third fuel droplet with uniform droplet distance

Autoignition Phenomena of a Single Diesel/1-Butanol Mixture Droplet (디젤/1-부탄올 혼합연료 단일액적의 자발화 현상)

  • Kim, Hyemin
    • Journal of ILASS-Korea
    • /
    • v.23 no.2
    • /
    • pp.90-95
    • /
    • 2018
  • The goal of this study is to experimentally observe the autoignition phenomena of a diesel/1-butanol mixture droplet in ambient pressure and $700^{\circ}C$ condition. A volume ratio of 1-butanol in the fuel was set to 25, 50 and 75%. A single droplet was installed at the tip of fine thermocouple, and the electric furnace dropped down to make elevated temperature condition. Droplet behavior during the experiment could be divided into 3 stages including droplet heating, puffing and autoignition/combustion. Puffing process intensively observed for the case of 1-butanol volume ratio of 25 and 50%, but did not occur at 75%. Increase of 1-butanol volume ratio hindered rise of the droplet temperature and delayed ignition. In addition, puffing process also affected on autoignition, so the ignition delay of 1-butanol volume ratio of 50% was became longer than that of 75% case.

Analysis of Fuel Droplet Vaporization at High-Pressure Environment (고압상태에서의 연료액적의 증발특성 해석)

  • Lee, J.C.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.35-43
    • /
    • 1996
  • A vaporization model for single component fuel droplet has been developed for applying to sub- and supercritical conditions. This model can account for transient liquid heat ins and circulation effect inside the droplet, forced and natural convection, Stefan flow effect, real gas effect and ambient gas solubility into the liquid droplet in high-pressure conditions. Thermodynamic and transport properties are calculated as functions of temperature and pressure in both phases. Numerical calculations are carried out for several validation cases with the detailed experimental data. Numerical results confirm that this supercritical vaporization model is applicable to the high-pressure conditions encountered in the combustion processes of diesel engine.

  • PDF

An Experimental Study on Evaporation and Ignition of the Single Droplet on Hot Surface (단일액적어류의 증발 , 착화에 관한 실험적 연구 - 가열 표면상에 적하할 경우 -)

  • Jang, Jae-Eun;An, Su-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.4
    • /
    • pp.418-429
    • /
    • 1992
  • Recently, many researchers make a great effort to develop high efficient marine diesel engines using low grade heavy oil, and also study substitution fuel oil for engines and boilers. In case of Fisheries Vessels, we need to know that fish oil can be substituted for fuel oil. Therefore, it is studied that evaporation, ignition and combustion phenomena of the single droplet of fish oils (i.e., Sardine fish oil, File fish oil and Alaska pollac oil) on heated plane surface to evaluate appropriateness as substitution oil. Methanol and light oil are tested simultaneously to help the evaluation on these Fish oils. The results are summarized as follows: 1. The type of evaporation and combustion is spherical evaporation in case of methanol and light oil. And fish oil blended with light oil was finished after spherical evaporation happen when high temperature. 2. Ignition of Pure fish oil was shorter than that of fish oil blended with light oil. 3. Heat transferred to droplet could make qualitative comparison by contact diameter of droplet with hot surface as time changes. Life time of droplet according to the change of heated surface temperature was greatly influenced by droplet contact condition on the heated surface. 4. As far as combustion phenomena was concerned, apparent diameter of the fish oil droplet increased after ignition and decreased suddenly by internal boiling of droplet. 5. Three fish oils had similar phenomena on the evaporation, ignition and combustion. 6. Evaporation and combustion feature of fish oil could not be shown by coefficient of evaporation velocity of droplet and coefficient of combustion velocity of droplet.

  • PDF

Microexplosive Vaporization of Miscible Binary Fuel Droplets (미세폭발을 가진 혼화 이성분 연료 액적의 증발 현상)

  • Ghassemi, Hojat;Baek, Seung-Wook;Khan, Qasim Sarwar
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.120-131
    • /
    • 2005
  • The evaporation characteristics of single and multicomponent droplets hanging at the tip of a quartz fiber are studied experimentally at the different environmental conditions under normal gravity. Heptane and Hexadecane are selected as two fuels with different evaporation rates and boiling temperatures. At the first step, the evaporation of single component droplet of both fuels has been examined separately. At the next step the evaporation of several blends of these two fuels, as a binary component droplet, has been studied. The temperature and pressure range is selected between 400 and 700 $^{\circ}C$, and 0.1 and 2.5 MPa, respectively. High temperature environment has been provided by a falling electrical furnace. The initial diameter of droplet was in range of 1.1 and 1.3 mm. The evaporation process was recorded by a high speed CCD camera. The results of binary droplet evaporation show the three staged evaporation. In the the first stage the more volatile component evaporates. The droplet temperature rises after an almost non evaporating period and in the third stage a quasi linear evaporation takes place. The evaporation of the binary droplet at low pressure is accompanied with bubble formation and droplet fragmentation and leads to incomplete microexplosion. The component concentration affects the evaporation behavior of the first two stages. The bubble formation and droplet distortion does not appear at high environment pressure. Nomenclature

  • PDF

A Study on the Various Characteristics of Ultrasonic-Energy-Added W/O Type Emulsified Fuel (II) - attaching importance to micro-explosion of single droplet and chemical characteristics - (초음파에너지 조사 W/O type 유화연료의 제반특성에 관한 연구(II) - 단일액적 미소폭발 및 화학적 특성을 중심으로 -)

  • Kim, Yong-Cheol;Han, Keun-Hee;Ryu, Jeong-In
    • Journal of ILASS-Korea
    • /
    • v.9 no.3
    • /
    • pp.29-34
    • /
    • 2004
  • To investigate characteristics and micro-explosion of single-droplets of emulsified fuel, water is mixed with diesel oil by using ultrasonic energy fuel feeding system. The fuel characteristics is analysed through H-NMR spectrum and micro-explosion phenomena of the emulsified fuel is also investigated. The life times of droplets of conventional diesel fuel, ultrasonic energy added diesel fuel and emulsified fuel we obtained additionally. According to this study, the micro-explosion phenomena of single-droplets happen in atmospheric pressure condition, a curve form of emulsified fuel's life tim is different from diesel fuel's one and the change of chemical structures is a cause of ultrasonic-energy-added diesel fuel effect.

  • PDF

Observations on the Near-Nozzle Behavior of an Unsteady Fuel Spray (노즐부근에서의 비정상분무 거동)

  • 구자예;정흥철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.100-111
    • /
    • 1994
  • Observations on the near-nozzle behavior of an unsteady fuel spray through single cylindrical hole nozzle were made by phase Doopler anemometer and microphotographs. At the edge of the spray, droplet velocity peaked during needle opening and closing. Droplet sizes tended to be small on the edge of spray. The near-nozzle spray angle taken from the microphotographs was time-dependent, even though it increased with gas-to-liquid density ratio as expected. The near-nozzle spray angle was the greatest on the initial stage and decreased to a relatively constant value after about one third of the total injection duration regardless of the ambient gas conditions, even in the near-vaccum condition. The wider near-nozzle spray angle in the early stage is due to the flow characteristics inside the nozzle rather than aerodynamic interactions. However, once the spray was established, aerodynamic interactions are essential in the near-nozzle atomization.

  • PDF

An Experimental Study on the Combustion Characteristics in Low Emission Multi-Staged Oil Burner (다단연소를 이용한 저 NOx 버너의 연소특성에 관한 연구)

  • An, Guk-Yeong;Kim, Han-Seok;Jo, Eun-Seong
    • 연구논문집
    • /
    • s.27
    • /
    • pp.101-108
    • /
    • 1997
  • The characteristics of combustion and emissions in multi-staged oil burner have been experimentally studied for the various range of equivalence ratios, drop sizes and fuel formulations. Malvern system was used to measure droplet size of fuel. Light fuel oil and light fuel oil doped with pyridine($C_5H _5N$) were used to investigate the effects on fuel NOx emission. The emissions of NO and CO in exhaust gas and the flame temperatures were measured by the gas analyzer and thennocouples. NOx emissions were increased by increasing the excess air ratio (range:$lambda=1.1-1.4$) or decreasing the SMD of droplet in single-staged burner. In comparison with the single-staged burner, the emission of NOx in multi-staged burner was reduced by 50% but CO emission was slightly increased. It is found that multi-staged burner has a good capability in reducing thermal NOx resulting from the distributed heat release rate and lower flame temperature in fuel-rich and fuel-lean combustion zone. Moreover, the fuel NOx emission of the multi-staged burner is lower than that of single-staged burner, because multi-staged burner has fuel rich zone where fuel N is converted to $N_2$ more than NO. In 3-staged burner, the percentage of each stage combustion air have strong influence on emission characteristics. It is also found that NOx emission can be reduced by decreasing inner and outer air percentage or increasing middle air flow rate and CO emission is vice versa.

  • PDF