• 제목/요약/키워드: Single Engine:Twin Engine

검색결과 5건 처리시간 0.016초

엔진 수에 따른 전투기 특성 비교분석연구 (A Trade-Off Study of the Number of Engines for Fighter Characteristics)

  • 김성래;류태규
    • 한국항공우주학회지
    • /
    • 제31권6호
    • /
    • pp.102-109
    • /
    • 2003
  • 전투기에 장착되는 엔진의 수는 필요한 추력과 가용엔진에 의해 대부분 결정되어 왔으나, 엔진 기술의 발달로 임무성능-체계분석-경제성 등이 중요한 고려요소가 되었다. 베트남전과 걸프전의 실전사례 분석 결과 안전성과 취약성은 쌍발기가, 피격율은 단발기가 다소 우수한 것으로 평가되었다. F404-GE-400과 F-125 엔진을 장착한 초음속 경공격기를 설계하여, 엔진 수에 따른 비교연구를 수행하였다. 쌍발기 형상이 최대이륙중량 8%, Flyaway Cost 26%, LCC 13% 정도 컸으며, 단발기 형상이 기동-저속성능과 RM&S 성능이 다소 우수하였으나 큰 차이는 없었다. 전투기의 획득시 저급(Low) 전투기는 단발엔진을, 중급이상(Med.+)의 전투기는 쌍발엔진을 적용하는 것이 체계분석-경제성-운용개념 등을 고려한 여러 측면에서 유리할 것으로 판단된다.

민수용 헬리콥터의 사고 비교분석 (The Relative Analysis of the Civil Helicopter Accident)

  • 이정훈;안이기
    • 한국항공운항학회지
    • /
    • 제15권1호
    • /
    • pp.18-25
    • /
    • 2007
  • The safety should be primarily considered for air vehicle, such as helicopter, which is not easy to cope with when out of order or loss of control that followed catastrophe. The U.S National Transportation Safety Board (NTSB) investigated and analyzed for 34 years rotorcraft accidents that occurred from 1963 through 1997. This paper handles intensively the relative investigation and analysis of recent 10 years domestic civil helicopter accidents to those of the United States in order to increase the safety of helicopter transportation and to consider the main design parameter before we develop Korean Civil Helicopter. To understand the overview of civil turbine helicopter accident, it uses the NTSB's accident investigation results and the overall accident trend for U.S civil single and twin turbine engine helicopter according to category, cause, activity, and phase of operation.

  • PDF

쌍축 컨테이너선의 조종성능 특성 연구 (Study on the Maneuvering Characteristics of a Container Ship with Twin Skegs)

  • 김연규;김선영;김형태;유병석;이석원
    • 대한조선학회논문집
    • /
    • 제43권1호
    • /
    • pp.15-21
    • /
    • 2006
  • Recently, the attention to large container ships whose size is greater than 10,000 TEU container ship has been increased due to their increasing demand. The large container ship has twin skegs because of the engine capacity and large beam-draft ratio. In this paper, the maneuvering characteristics of a container ship with twin skegs were investigated through 4DOF(four degree of freedom) HPMM(Horizontal Planar Motion Mechanism) test and computer simulation. A mathematical model for maneuvering motion with 4DOF of twin skegs system was established to include effects of roll motion on the maneuvering motion. And to obtain roll-coupling hydrodynamic coefficients of a container ship, 4DOF HPMM system of MOERI which has a roll moment measurement system was used. HPMM tests were carried out for a 12,000 TEU class container ship with twin skegs at scantling load condition. Using the hydrodynamic coefficients obtained, simulations were made to predict the maneuvering motion. Rudder forces of twin-rudders were measured at the angles of drift and rudder. The neutral rudder angles with drift angles of ship was quite different with those of single skeg ship. So other treatment of flow straightening coefficient $\gamma_R$ was used and the simulation results was compared with general simulation result. The treatment of experimental result at static drift and rudder test was very important to predict the maneuverability of a container ship with twin skegs.

손상된 카페리 선박의 파랑중 자항상태 CFD 해석 (CFD Simulation of the Self-propulsion of a damaged Car Ferry in Waves)

  • 김제인;박일룡;김진;김광수;김유철
    • 대한조선학회논문집
    • /
    • 제56권1호
    • /
    • pp.34-46
    • /
    • 2019
  • This paper provides the numerical results for the self-propulsion performance in waves of a car ferry vessel with damage in one of its twin-screw propulsion systems without flooding the engine room. The numerical simulations were carried out according to the Safe Return to Port (SRtP) regulation made by the Lloyd's register, where the regulation requires that damaged passenger ships should have an ability to return to port with a speed of 6 knots in a Beaufort 8 sea condition. For the validation of the present numerical analysis study, the resistance performance and the self-propulsion performance of the car ferry in intact and damaged conditions in calm water were calculated, which showed a satisfactory agreement with the model test results of Korea Research Institute of Ship and Ocean engineering (KRISO). Finally, the numerical simulation of self-propulsion performance in waves of the damaged car ferry ship was carried out for a normal sea state and for a Beaufort 8 sea state, respectively. The estimated average Brake Horse Power (BHP) for keeping the damaged car ferry ship advancing at a speed of 6 knots in a Beaufort 8 sea state reached about 47% of BHP at MCR condition or about 56% of BHP at NCR condition of the engine determined at the design state. In conclusion, it can be noted that the engine power of the damaged car ferry ship in single propulsion condition is sufficient to satisfy the SRtP requirement.