• Title/Summary/Keyword: Single Droplet

Search Result 190, Processing Time 0.023 seconds

Droplet Size Distribution Effect on the Electro-Optical Properties of Emulsion Type Polymer Dispersed Liquid Crystal (에멀전 방식의 고분자 분산형 액정의 전기 광학 특성에 미치는 액적 크기 분포의 영향)

  • Yoo, Hee Sang;Oh, Nam-Seok;Yan, Jin;Kwon, Soon-Bum
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.439-445
    • /
    • 2015
  • We established the emulsion method using membrane filter with precise control of LC droplet distribution in PDLC. PDLC cells with various LC droplet size distributions such as single droplet sizes of $1.0{\mu}m$, $1.9{\mu}m$ and $3.5{\mu}m$, the mixture of two different LC droplet sizes and the mixture of three different LC droplet sizes were fabricated and the electro-optical properties of the emulsion type PDLC cells with various droplet size distribution were investigated. In the appropriate droplet size range, the PDLCs with the single droplet sizes distributions have good electro optical properties than those with the mixture of three different LC droplet sizes. In addition, the PDLC cells with the mixture of two different LC droplet sizes have the better electro optical properties than those with single droplet sizes distribution. The PDLC cell with dual droplet size distribution of $1.0+1.9{\mu}m$ shown the best electro optical properties than the PDLC cells with other size distributions. This method enabled us to find the proper LC droplet size distribution for achieving both high transmittance and contrast ratio.

Experimental Study on Microexplosive Burning of Binary Fuel Droplets (이성분 연료 액적 연소에 관한 실험적 연구)

  • Ghassemi, Hojat;Baek, Seung-Wook;Khan, Qasim Sarwar
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.110-119
    • /
    • 2005
  • The combustion characteristics of binary component single droplets hanging at the tip of a quartz fiber are studied experimentally at different environmental pressures and temperatures under normal gravity. Normal Heptane and Normal Hexadecane are selected as two fuels with high difference in boiling temperatures. A falling electrical furnace in a high pressure vessel has provided high temperature environment. Nitrogen and air have formed the environment to study evaporation and combustion, respectively. The initial diameter of droplet was ranging from 1.1 to 1.3 mm. The evaporation and combustion processes were recorded by a high speed digital camera. Some characteristics of droplet burning under different environment conditions and different droplet composition have been investigated. Microexplosion of droplet take places under atmospheric pressure. Bubble formation and its consequent result, incomplete droplet disintegration which presents in all binary compositions, do not appear at high pressure. The initiation of combustion, always takes place in the bottom of droplet due to buoyancy effect of relatively cold fuel vapor. Also, the burning of binary droplet produces soot when the pressure is high.

  • PDF

Evaporation Cooling of Single Droplet on a Heated Solid Surface (가열된 고체표면에 부착된 단일 액적의 증발냉각)

  • Yu, Gap-Jong;Bang, Chang-Hun;Kim, Jeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.845-852
    • /
    • 2001
  • The characteristics of evaporation cooling of single droplet on a heated surface were studied experimentally. The two kinds of heater modules were tested to measure cooling characteristics of metal surface (high conductivity) and Teflon surface (low-energy surface, low conductivity). The results showed that time averaged heat flux during droplet evaporation increased exponentially with initial surface temperatures of brass, copper and steel. The heat flux and evaporation time did not varied with metal conductivities. However, the temperature drop after the deposition of droplet was larger on Teflon than on the metals. Thus, the correlation of interface temperature between liquid droplet and metal surface was proposed as a function of the initial surface temperature of heating materials, which could be applied to both metal and non-metal ones.

Experimental investigation of growth and transport behavior of single water droplet in a simplified channel of PEM fuel cell (PEM 연료전지의 단순화된 공기극 채널 내 단일 물방울의 성장 및 이동 특성에 대한 실험적 연구)

  • Kim, Bok-Yung;Kim, Han-Sang;Min, Young-Doug
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.81-84
    • /
    • 2006
  • To investigate the characteristics of water droplet on the gas diffusion layer from both upper-view and side-view of flow channel, a rig test apparatus was designed and fabricated with L-shape acryl plate in a $1mm{\times}1mm$ micro-channel. This experimental device is used to simulate the single droplet growth and its transport process under fuel cell operating condition. As a first step, we investigated the growth and transport of single water droplet with working temperature and air flow velocity. The contact angle and its hysteresis of water droplet at departing moment are measured and analyzed. It is expected that this study can provide the basic understanding of liquid water droplet behavior in gas flow channel and GDL interface during the PEM fuel cell operation.

  • PDF

Experimental Study on the Soot Formation Characteristics of Alkane-based Single Fuel Droplet (알케인계 단일 연료 액적의 Soot 생성 특성에 관한 실험적 연구)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.80-86
    • /
    • 2017
  • The soot formation characteristics of various alkane-based single fuel droplets were studied in this work. Also, This study was performed to provide the database of the soot behavior and formation of alkane-based single fuel droplet. The experimental conditions were set to 1.0 atm of ambient pressure ($P_{amb}$), 21% of oxygen concentration ($O_2$) and 79% of nitrogen concentration ($N_2$). Combustion and soot formation of single fuel droplet was visualized by visualization system with high speed camera. At the same time, ambient pressure, oxygen concentration and nitrogen concentration were maintained by ambient condition control system. Soot formation characteristics was analyzed and compared on the basis of intensity ratio ($I/I_0$) of background image. The results of toluene fuel droplet showed the largest soot generation. Soot volume fraction ($f_v$) was almost the same under the identical fuel types regardless of various initial droplet diameter ($d_0$) since thermophoretic flux was not much changed under the same ambient conditions.

Simplified Ground-type Single-plate Electrowetting Device for Droplet Transport

  • Chang, Jong-Hyeon;Kim, Dong-Sik;Pak, James Jung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.402-407
    • /
    • 2011
  • The current paper describes a simpler ground-type, single-plate electrowetting configuration for droplet transport in digital microfluidics without performance degradation. The simplified fabrication process is achieved with two photolithography steps. The first step simultaneously patterns both a control electrode array and a reference electrode on a substrate. The second step patterns a dielectric layer at the top to expose the reference electrode for grounding the liquid droplet. In the experiment, a $5{\mu}m$ thick photo-imageable polyimide, with a 3.3 dielectric constant, is used as the dielectric layer. A 10 nm Teflon-AF is coated to obtain a hydrophobic surface with a high water advancing angle of $116^{\circ}$ and a small contact angle hysteresis of $5^{\circ}$. The droplet movement of 1 mM methylene blue on this simplified device is successfully demonstrated at control voltages above the required 45 V to overcome the contact angle hysteresis.

Autoignition Phenomena of a Single Diesel/1-Butanol Mixture Droplet (디젤/1-부탄올 혼합연료 단일액적의 자발화 현상)

  • Kim, Hyemin
    • Journal of ILASS-Korea
    • /
    • v.23 no.2
    • /
    • pp.90-95
    • /
    • 2018
  • The goal of this study is to experimentally observe the autoignition phenomena of a diesel/1-butanol mixture droplet in ambient pressure and $700^{\circ}C$ condition. A volume ratio of 1-butanol in the fuel was set to 25, 50 and 75%. A single droplet was installed at the tip of fine thermocouple, and the electric furnace dropped down to make elevated temperature condition. Droplet behavior during the experiment could be divided into 3 stages including droplet heating, puffing and autoignition/combustion. Puffing process intensively observed for the case of 1-butanol volume ratio of 25 and 50%, but did not occur at 75%. Increase of 1-butanol volume ratio hindered rise of the droplet temperature and delayed ignition. In addition, puffing process also affected on autoignition, so the ignition delay of 1-butanol volume ratio of 50% was became longer than that of 75% case.

Effect of Ambient Temperature and Droplet Size of a Single Emulsion Droplet on Auto-ignition and Micro-explosion (단일 유화액적에서의 분위기 온도와 액적크기에 따른 자발화와 미소폭발의 영향)

  • Jeong, In-Cheol;Lee, Kyung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.49-55
    • /
    • 2007
  • The characteristics of auto-ignition and combustion process of a single droplet of emulsified fuel suspended in a high-temperature air chamber have been investigated experimentally with various droplet sizes, surrounding temperatures, and water contents. The used fuels was n-Decane and it was emulsified with varied water contents whose maximum is 30%. The high-speed camera has been adopted to measure the ignition delay and flame life time. It was also applied to observe micro-explosion behaviors. The increase of droplet size and chamber temperature cause the decrease of the ignition delay time and flame life-time. As the water contents increases, the ignition delay time increases and the micro-explosion behaviors are strengthened. The starting timings of micro-explosion and fuel puffing are compared for different droplet sizes and the amount of water contents.

Microexplosive Vaporization of Miscible Binary Fuel Droplets (미세폭발을 가진 혼화 이성분 연료 액적의 증발 현상)

  • Ghassemi, Hojat;Baek, Seung-Wook;Khan, Qasim Sarwar
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.120-131
    • /
    • 2005
  • The evaporation characteristics of single and multicomponent droplets hanging at the tip of a quartz fiber are studied experimentally at the different environmental conditions under normal gravity. Heptane and Hexadecane are selected as two fuels with different evaporation rates and boiling temperatures. At the first step, the evaporation of single component droplet of both fuels has been examined separately. At the next step the evaporation of several blends of these two fuels, as a binary component droplet, has been studied. The temperature and pressure range is selected between 400 and 700 $^{\circ}C$, and 0.1 and 2.5 MPa, respectively. High temperature environment has been provided by a falling electrical furnace. The initial diameter of droplet was in range of 1.1 and 1.3 mm. The evaporation process was recorded by a high speed CCD camera. The results of binary droplet evaporation show the three staged evaporation. In the the first stage the more volatile component evaporates. The droplet temperature rises after an almost non evaporating period and in the third stage a quasi linear evaporation takes place. The evaporation of the binary droplet at low pressure is accompanied with bubble formation and droplet fragmentation and leads to incomplete microexplosion. The component concentration affects the evaporation behavior of the first two stages. The bubble formation and droplet distortion does not appear at high environment pressure. Nomenclature

  • PDF

Effect of Ambient Conditions on the Soot Generation of Decane Fuel Droplet (분위기 조건이 Decane 액적의 Soot 생성에 미치는 영향)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.211-215
    • /
    • 2014
  • The main purpose of this study is to provide basic information of droplet soot generation of decane fuel. To achieve this, this paper presents the experimental results on the decane droplet combustion conducted under various ambient pressure($P_{amb}$), and oxygen concentration($O_2$) conditions. At the same time, the experimental study was conducted in terms of soot volume fraction($f_v$) and its maximum value. Also, visualization of single fuel droplet was conducted by high resolution CCD camera and ambient pressure($P_{amb}$) and oxygen concentration($O_2$) was changed by control system. It was revealed that higher ambient pressure($P_{amb}$), and oxygen concentration($O_2$) enhanced the soot generation and improved the maximum soot volume fraction( $f_v$).