• Title/Summary/Keyword: Single Drop Impact

Search Result 18, Processing Time 0.026 seconds

Recent Progress of Spray-Wall Interaction Research

  • Lee Sang-Yong;Ryu Sung-Uk
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1101-1117
    • /
    • 2006
  • In the present article, recent progress of spray-wall interaction research has been reviewed. Studies on the spray-wall interaction phenomena can be categorized mainly into three groups: experiments on single drop impact and spray (multiple-drop) impingement, and development of comprehensive models. The criteria of wall-impingement regimes (i.e., stick, rebound, spread, splash, boiling induced breakup, breakup, and rebound with breakup) and the post-impingement characteristics (mostly for splash and rebound) are the main subjects of the single-drop impingement studies. Experimental studies on spray-wall impingement phenomena cover examination of the outline shape and internal structure of a spray after the wall impact. Various prediction models for the spray-wall impingement phenomena have been developed based on the experiments on the single drop impact and the spray impingement. In the present article, details on the wall-impingement criteria and post-impingement characteristics of single drops, external and internal structures of the spray after the wall impact, and their prediction models are reviewed.

Investigation of Spread-Splash Transition Criterion of an Electrically Charged Droplet (전기적으로 대전된 액적의 스프레드-스플래시 영역 간 천이조건에 대한 연구)

  • Ryu, Sung-Uk;Lee, Sang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2995-3000
    • /
    • 2008
  • Understanding of the impinging behavior of an electrically charged spray is essential in determining appropriate operating conditions for electro-spraying of paints, surface coating materials and insecticides. In the present work, the wall impact behavior of an electrically charged drop has been investigated and compared with that of a neutral drop experimentally. The critical Sommerfeld number representing the spread-splash boundary for the charged drop impacting on the dielectric substrate turned out to be larger compared to that for the neutral drop with the same surface condition. The change of the transition boundary is due to the increase in the surface wettability of the drop on the substrate. However, with the electrically conducting substrates, the charging effect on the transition boundary appeared negligible. This is because the electric discharging time is much shorter than the time required for the flattened drop to reach its maximum extent.

  • PDF

Determination of Shock Absorption Performance and Shear Modulus of Rubbers by Drop Impact Test (낙하충격실험을 통한 고무의 충격흡수성능과 전단계수 평가)

  • Kang, Dong-Hwan;Seo, Mu-Yeol;Gimm, Hak-In;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.321-328
    • /
    • 2009
  • Shock absorption performances of various rubbers were investigated by using drop impact test. Several types of rubber such as NR, NBR, EPDM, SR and PUR with three respective levels of shore hardness were used for the test. As in the cases, the absorbed impact energies in rubbers were measured under seven different loads against impact energy between 5-80J. The impact absorption efficiencies of the rubbers then were evaluated by means of both single impact energy condition and summation of all impact energy applied condition. As shown in the results, PUR and EPDM have better shock absorption performances than other rubbers. Further analysis was extended to determine a shear modulus of SR through the finite element implementation with Blatz-Ko model. As can be seen, relatively higher level of absorption energy results in a decreasing shear modulus.

Response of low-temperature steel beams subjected to single and repeated lateral impacts

  • Truong, Dac Dung;Jung, Hae-Jung;Shin, Hyun Kyoung;Cho, Sang-Rai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.670-682
    • /
    • 2018
  • This paper presents the experimental and numerical investigation results of the response of low-temperature steel (LT-FH32 grade steel) beams under repeated impacts at room temperature and a single impact at a sub-zero temperature. After conducting tensile tests at room and sub-zero, repeated impact tests were conducted on two clamped single-beam models at room temperature, and single-impact tests of two other clamped single-beam models were conducted at $-50^{\circ}C$. The single and repeated impact tests were conducted by releasing a knife-edge striker using a drop testing machine. The permanent deflection of the model measured after each impact gradually increased with increasing number of impacts. Under the reduced temperature, the permanent deflection of the models slightly decreased. The numerical analyses were also performed to predict the damage response of the tested single-beam models. A comparison of the numerical prediction with those of experiments showed quite reasonable agreement.

Parametric study on the structural response of a high burnup spent nuclear fuel rod under drop impact considering post-irradiated fuel conditions

  • Almomani, Belal;Kim, Seyeon;Jang, Dongchan;Lee, Sanghoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1079-1092
    • /
    • 2020
  • A parametric study of several parameters relevant to design safety on the spent nuclear fuel (SNF) rod response under a drop accident is presented. In the view of the complexity of interactions between the independent safety-related parameters, a factorial design of experiment is employed as an efficient method to investigate the main effects and the interactions between them. A detailed single full-length fuel rod is used with consideration of post-irradiated fuel conditions under horizontal and vertical free-drops onto an unyielding surface using finite-element analysis. Critical drop heights and critical g-loads that yield the threshold plastic strain in the cladding are numerically estimated to evaluate the fuel rod structural resistance to impact load. The combinatory effects of four uncertain parameters (pellet-cladding interfacial bonding, material properties, spacer grid stiffness, rod internal pressure) and the interactions between them on the fuel rod response are investigated. The principal finding of this research showed that the effects of above-mentioned parameters on the load-carrying capacity of fuel rod are significantly different. This study could help to prioritize the importance of data in managing and studying the structural integrity of the SNF.

Development of A Computer Program for Drop Time and Impact Velocity of the Rod Cluster Control Assembly (제어봉집합체의 낙하시간과 충격속도 계산을 위한 프로그램 개발)

  • Park, Ki-Seong;Kim, Il-Kon
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.197-204
    • /
    • 1994
  • In a PWR rod cluster control assembly(RCCA) for shutdown is released upon action of control rod drive mechanism and falls down through the guide thimble by its weight. Drop time and impact velocity of the RCCA are two key parameters with respect to reactivity insertion time and the mechanical integrity of fuel assembly. Therefore, the precise control of drop time and impact velocity is prerequisite to modifying the existing design features of the RCCA and guide thimble or newly designing them. During its falling down into the core, the RCCA is retarded by various forces acting on it such as fluid resistance caused by the RCCA movement, buoyance and mechanical friction caused by contacting inner surface of the guide thimble, etc. However, complicated coupling of the various forces makes it difficult to derive an analytical dynamic equation for the drop time and impact velocity. This paper deals with the development of a computer program containing an analytical dynamic equation applicable to the Korean Fuel Assembly(KOFA). The computer program is benchmarked with an available single control rod drop tests. Since the predicted values are in good agreement with the test results, the computer program developed in this paper can be employed to modify the exiting design features of the RCCA and guide thimble and to develope their new design features for advanced nuclear reactors.

  • PDF

Impact Bending Test Simulations of FH32 High-strength Steel for Arctic Marine Structures

  • Choung, Joonmo;Han, Donghwa;Noh, Myung-Hyun;Lee, Jae-Yik;Shim, Sanghoon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.28-39
    • /
    • 2016
  • This paper provides theoretical and experimental results to verify the crashworthiness of FH32 high-strength steel for arctic marine structures against ice impact. Assuming that side-shell structures of the Korean arctic research vessel, ARAON, with ice-notation PL10, collide with sheet ice, one-third-scale test specimens with a single transverse frame are manufactured. Impact-bending tests were conducted using a rigid steel striker that mimics sheet ice. Drop height was calculated by considering the speed at which sheet ice is rammed. Prior to impact-bending tests, tensile coupon tests were conducted at various temperatures. The impact-bending tests were carried out using test specimens fully fixed to the inside bottom frame of a cold chamber. The drop-weight velocity and test specimen deformation speed were measured using a high-speed camera and digital image correlation analysis (DICA). Numerical simulations were carried out under the same conditions as the impact-bending tests. The simulation results were in agreement with the test results, and strain rate was a key factor for the accuracy of numerical simulations.

Preliminary Investigation on Spread-Rebound Regime of an Electrically Charged Droplet (전기적으로 대전된 액적의 스프레드-리바운드 거동 영역에 대한 기초 연구)

  • Ryu, Sung-Uk;Lee, Sang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2067-2072
    • /
    • 2007
  • Understanding of the impinging behavior of an electrically charged spray is essential in determining appropriate operating conditions for electro-spraying of paints, surface coating materials and insecticides. In the present work, as an initial step, the wall impact of an electrically charged droplet has been experimentally investigated. The charged drops were directed on the surface of a paraffin wax, and the impinging behavior was visualized and recorded using a CCD camera to identify the impingement regime. The spread-rebound boundary for the charged drop turned out to be smaller compared to that for an electrically neutral droplet under the same surface condition. The shift of the transition criterion is considered to be due to the discrepancy between the maximum spread ratio of the electrically charged droplet and that of the neutral droplet.

  • PDF

On the Fracture of Polar Class Vessel Structures Subjected to Lateral Impact Loads (횡충격하중을 받는 빙해선박 구조물의 파단에 관한 연구)

  • Min, Dug-Ki;Cho, Sang-Rai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.281-286
    • /
    • 2012
  • Single frame structures with notches were fractured by applying drop impact loadings at room temperature and low temperature. Johnson-Cook shear failure model has been employed to simulate the fractured single frame structures. Through several numerical analyses, material constants for Johnson-Cook shear failure model have been found producing the cracks resulted from experiments. Fracture strain-stress triaxiality curves at both room temperature and low temperature are presented based on the extracted material constants. It is expected that the fracture strain-stress triaxiality curves can offer objective fracture criteria for the assessment of structural fractures of polar class vessel structures fabricated from DH36 steels. The fracture experiments of single frame structures revealed that the structure on low temperature condition fractures at much lower strain than that on room temperature condition despite the same stress states at both temperatures. In conclusion, the material properties on low temperature condition are essential to estimate the fracture characteristics of steel structures operated in the Northern Sea Route.

Soil Detachment by Single and Multiple Waterdrops (우적(雨滴)에 의한 토양(土壤) 침식(侵蝕))

  • Miller, W.P.;Kim, Kye-Hoon
    • Applied Biological Chemistry
    • /
    • v.38 no.2
    • /
    • pp.151-156
    • /
    • 1995
  • Single-drop splash/detachment studies and multiple-drop splash/detachment experiments were carried out to measure detachment by single and multiple drops. A raindrop tower 7.0 m in height was used to study soil splash by single drop raindrop impact over time on repacked soil samples in containers 76.2 mm in diameter. The waterdrop diameter and kinetic energy were 4.1 mm and $1.22{\times}10^{-3}$ J $drop^{-1}$, respectively. The samples consisted of five agricultural topsoils sieved to <2 mm, varying from sandy loam to clay loam in texture. The average weight of splashed soil particles after 75 drops did not show any significant difference between the five soils. The average weight of particles splashed by the first 15 drops showed that the sandy Pelham soil splashed to a greater degree than the others, and was therefore more detachable (p=0.05) than the other soils. The average weight of particles splashed by the last 15 drops also showed that the Pelham soil was the most detachable, with Cecil, Appling, Dyke, and Worsham soils being progressively less detachable. The effect of multiple drops on detachment was studied under a nozzle-type rainfall simulator at 74.9 mm $h^{-1}$ intensity for 85 min using the same soils as the single drop experiments. The total soil splash value for 85 min on Appling, Cecil, Dyke, Pelham, and Worsham soils were 6121, 6206, 4183, 5160, and 3247 g $m^{-2}$, respectively. There were no obvious relationships between soil loss measured from the different experiments.

  • PDF