• Title/Summary/Keyword: Single Cell Gel Electrophoresis (Comet assay)

Search Result 86, Processing Time 0.026 seconds

Evaluation of protective effect of peach kernel extracts on radiation-induced DNA damage in human blood lymphocytes in the single cell gel electrophoresis assay (단세포 겔 전기영동법을 이용한 사람 림프구 DNA 손상에 대한 복숭아씨 추출물의 방사선 방어효과 평가)

  • Kim, Jin-Kyu;Park, Tae-Won;Lee, Chang-Joo;Chai, Young-Gyu
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.2
    • /
    • pp.93-99
    • /
    • 1999
  • The alkaline single-cell gel electrophoresis (SCGE) assay, called the comet assay, has been applied to the detection of DNA damage from a number of chemical and biological factors in vivo and in vitro. The comet assay is a novel method to assess DNA single-strand breaks, alkali-labile sites in individual cells. The effect of peach kernel extracts on radiation-induced DNA damage in human blood lymphocytes was evaluated by the SCGE assay. The lymphocytes, with or without pretreatment of the extracts, were exposed to 0, 0.1, 0.3, 0.5, 1.0 and 2.0 Gy of $^{60}Co$ gamma ray. Significantly increased tail moment, which was a marker of DNA strand breaks in the comet assay, showed an excellent dose-response relationship. The treatment of the peach kernel extracts reduced the DNA damage by 30 % in irradiated groups as compared to that in non-treated control groups. The result indicates that the extracts shows radioprotective effect on lymphocyte DNA when assessed by the comet assay.

  • PDF

Chemopreventive Effect of Vegetable or Fruit Extract Against Total Diesel Exhaust Particle Extract in NIH/3T3 Cells Using Alkaline Single Cell Gel Electrophoresis (총 디젤분진의 DNA 손상작용과 야채 및 과일추출물의 보호효과)

  • Heo Chan;Kim Nam-Yee;Heo Moon-Young
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.2 s.53
    • /
    • pp.127-138
    • /
    • 2006
  • In urban areas, diesel exhaust particles (DEP) are probably a major component of particulate matters, especially in Korea where drive many diesel vehicles. The aim of this study was to investigate genotoxic effects of DEP using single ceil gel electrophoresis. In order to evaluate the mechanisms of DEP genotoxicity, the rat microsome mediated and DNA repair enzyme treated comet assays together with conventional comet assay were performed. Total diesel particles (DEPT) was collected without site fractionation from diesel engine bus and dichloromethane extract was obtained. The organic extract of DEPT revealed DNA damage itself in NIH/3T3 cells. The level of DNA breaks plus oxidative DNA lesions and microsome mediated DNA damage was assessed by modified single cell gel eletrophoresis. DEPT was able to induce oxidative DNA damage as well as microsome mediated DNA damage. Vitamin C as an model antioxidant reduced DNA damage in endonuclase III treated comet assay. One of flavonoid, galangin as a CYP1A1 inhibitor. reduced DNA damage in the presence of S-9 mixture. $DEP_T$ is the sources of oxidative stress, but antioxidants can significantly reduce oxidative DNA dmage. And $DEP_T$ may contain indirect mutagens which can be inhibited by CYP1A1 inhibitors. The ethanol extracts of the mixed vegetables (BV) or the mixed fruits (BF) were evaluated for their in vitro antigenotoxic effects. BV and BF showed potent Inhibitory effects against DEPT induced DNA damage with oxidative DNA lesions and in the prescence of S-9 mixture. These results indicate that BV and BF could prevent cellular DNA damage by inhibiting oxidative stress and suppressing cytochrome P4501A1 in cell culture.

Detection of Irradiated Beans Using the DNA Comet Assay (DNA Comet Assay를 이용한 콩류의 방사선 조사 확인)

  • 오경남;김경은;양재승
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.5
    • /
    • pp.843-848
    • /
    • 2000
  • The single cell-gel electrophoresis assay (comet assay) was used to identify irradiated beans. Soy beans, kidney beans, and red beans were irradiated with $^{60}Co$ gamma rays at 0.1, 0.3, 0.5, 0.7, and 1.0 kGy. Beans were peeled out, crushed lightly, and treated with phosphate-buffered saline (PBS) to extract cells. The extracted cell suspension was mixed with agarose gel solution and spread on an agarose precoated slide. After lysis of the cells, they were subjected to microgel electrophoresis for 2 minutes, and then silver-stained. We found that the DNA fragments of the irradiated samples were stretched, migrated out of the cells, and formed tails towards the anode giving the appearance of comets, while the unirradiated or the undamaged cells formed very short or no tails. The tail lengths of irradiated samples were significantly increased as irradiation dose increased at the above 0.3 kGy.

  • PDF

Assessment of Nucleus-DNA Damage in Red Pepper Cells Treated with γ-Radiation through Comet Assay (Comet 분석을 통한 방사선처리 고추세포의 핵 DNA 손상평가)

  • An, Jung-Hee;Back, Myung-Hwa;Kim, Jae-Sung;Jeong, Jeong-Hag;Kwon, Soon-Tae
    • Journal of Plant Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.225-230
    • /
    • 2004
  • We employed single cell gel electrophoresis method (comet assay) to analyze the degree of nucleus-DNA damage in the leaves of red pepper (Capsicum annuum L.) seedlings exposed to $^{60}$ CO v-radiation stress. Nucleus-DNA damage was measured as the ratio of tail length (T) to head length (H) in individual comet image isolated from pepper leaf cell. The T/H ratio of control-cells and treated-cells at 50 or 100 Gy were 1.28 and 3.54 or 3.39, respectively, suggesting that nuclei of pepper cells were severely damaged in the integrity of DNA strand by the treatment of enhanced v-radiation. The percentage of head-DNA in control-cells was 76.8%, whereas those of 50 and 100 Gy treated-cells were 55.9% and 59.9%, respectively. Pretreatment of low dose (4 to 20 Gy) radiation to seeds decreased DNA-damage in the leaves of seedlings treated with high dose radiation at 50 or 100 Gy. In this experiment, we developed a sensitive, reliable and rapid method for evaluating genotoxic effect in the nuclei of plant cells by employing comet assay.

Benzopyrene에 노출된 광어(Conger myriaster) 혈액 cells과 개조게(Saxidomus purpurata) 조직 cells을 이용한 in vivo DNA single strand breakage

  • 김소정;오로라;하병혁;최은석;장만;이택견
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2002.11a
    • /
    • pp.145-153
    • /
    • 2002
  • 유해 화학 물질류에 의해 오염된 해양 환경 시료의 환경독성 수준을 평가하기 위하여 다양한 화학물질에 대해 민감성이 우수한 생물학적 독성평가기법을 개발 하고자하였다. 지속성 유기오염 물질 중 다환 방향 족 탄화수소(PAHs)를 처리한 광어(Conger myriaster)와 개조개(Saxidomus pupurata)의 DNA 손상정도를 single cell gel electrophoresis assay(comet assay)를 통해 분석하였다. PAHs 중 광양만에서 높은 농도로 검출되는 benzo(a)pyrene을 농도별(0, 10, 50, 100 ppb)로 처리한 후 2일과 4일에 광어의 혈액세포와 개조개의 근육세포를 채취해 comet assay를 실시하였다. benso(a)pyrene에 대한 DNA 손상정도를 처리된 농도와 생물종에 따라 다르게 나타났는데 광어의 혈액세포는 2일에 가장 DNA 손상정도가 높았고, 4일에는 회복되는 경향을 나타냈다. 개조개의 근육세포는 시간이 지나면서 DNA 손상정도가 증가하는 경향을 보였다. 이와 같은 결과는 comet assay 기법이 유해 화학물질로 오염된 해양생물 종의 환경독성을 검색하는 유용한 수단이 될 수 있음을 보여준다.

  • PDF

Smoking Related DNA Damage in Human Lymphocytes Assessed by the Comet Assay (단세포전기영동법으로 평가한 흡연자의 백혈구 DNA손상)

  • 선수진;정해원;한정호
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.2
    • /
    • pp.83-89
    • /
    • 2002
  • The single cell gel electrophoresis (comet) assay is one of the useful tools for the study of genetic damage in humans exposed to environmental mutagens and carcinogens. This study was undertaken to evaluate the status of DNA damage in peripheral lymphocytes depending on their sex, age, smoking habits, and other factors in normal healthy Korean population. The 99 volunteers included in the study and out of these, 36 volunteers were smoker and 63 volunteers were non-smoker aged between 20-59 years. All individual answered a questionnaire that assessed their general information including smoking habits and the extent of the environmental tobacco smoke (ETS) exposure, and blood samples were obtained. There was a statistically significant difference in the extent of DNA damage between smoker and non-smoker (p<0.001). A significant difference was also observed between male and female (p<0.001) and amongst the different group of age (p<0.005), however, correlation analysis showed that only smoking habit was a significant factor for DNA damage. No significant effect of smoking duration, number of cigarettes smoking a day, SPY (smoke pack years) in smokers and environmental tobacco smoke exposure in non-smokers on the status of DNA damage was observed.

  • PDF

Use of comet assay as a bioassay in marine organisms exposed to genotoxicants (유전독성물질로 오염된 해양생물의 생물검정법으로서 comet assay 이용)

  • Kim Gi-Beum;An Joon-Gun;Kim Jae-Won
    • Journal of Environmental Science International
    • /
    • v.14 no.11
    • /
    • pp.1071-1079
    • /
    • 2005
  • Using single cell gel electrophoresis, DNA single strand breaks were determined in various marine organisms. DNA damage on fish blood cells was detected to know whether there was a difference between Incheon, Pohang, Masan, and Tongyeong as a control site. Tongyeong showed the lowest DNA damage among the study areas. Mussels, transplanted to Masan Bay for one month, revealed high DNA damage at sites with high economical activity. In two weeks exposure of polychaete to Incheon sediments, higher DNA damage was detected in the sediment adjacent to Incheon harbor than open sea. These results suggested that the marine organism from the polluted area revealed a relatively high DNA damage. In addition, these areas might be contaminated with genotoxic compounds and comet assay was useful as a bioassay to detect DNA damage in marine organisms.

Assessment of DNA Damage using an Alkaline Single Cell Gel Electrophoresis (SCGE) Comet Assay and Toxic Effects in Chickens by T-2 Toxin Treatment (T-2 toxin을 투여한 닭에서 Comet assay 방법을 이용한 DNA 손상 평가와 독성)

  • Hah Dae-Sik;Heo Jung-Ho;Lee Kuk-Cheon;Cho Myung-Heui;Kim Kuk-Hun;Kim Chung-Hui;Lue Jae-Du;Lee Seung-Hwan;Kim Gon-Sup;Kim Eui-Gyung;Kim Jong-Shu
    • Toxicological Research
    • /
    • v.22 no.2
    • /
    • pp.75-85
    • /
    • 2006
  • This study was designed to evaluate the possible DNA damaging effects of T-2 toxin using an alkaline single cell gel electrophoresis (SCGE) comet assay and also to investigate toxic effects in chickens. A total of 20 chickens were used in these experiments. Graded concentrations of dietary T-2 toxin (0, 4, 8, and $16{\mu}g/g$ of diet) were given to groups of 5 broiler chickens. In comet assay, The DNA damage was analysed by the tail extent moment (TEM) and tail length (TL), which were used as markers of DNA strand breaks in SCGE. A significant dose-dependent increase in the extent of DNA migration as well as in the percentage of cells with tails was observed after treatment with T-2 toxin (P<0.05). Treatment with the low T-2 toxin ($4{\mu}/g$ of diet) induced a relatively low level of DNA damage in comparison with the high T-2 toxin ($16{\mu}/g$ of diet) group. The growth rate was significantly reduced by concentrations of 8, and $16{\mu}/g$ of diet (P < 0.05). The feed conversion ratio were significantly affected by any concentrations (P < 0.05). The relative weight of the spleen, and lung was decreased by the growth inhibitory concentrations. The bursa of Fabricius, thymus, and kid- ney were decreased in relative weight by concentrations of $16{\mu}/g$ of diet. The relative weight of the liver and heart were unaffected. The hemoglobin (Hb), hematocrit (HCT), and mean corpuscular hemoglobin (MCH) were decreased at concentration of $16{\mu}/g$ of diet. As compared with control chickens, there was no marked change in serum components except uric acid in T-2 treated chickens. All lymphoid tissues retained atrophic and lymphoid cell depletion throughout the three weeks trial.

Analysis of gamma-ray-induced DNA damage in human, mouse and rat peripheral blood lymphocytes using single-cell gel electrophoresis (단세포 전기영동법을 이용한 인체, 마우스 및 랫드 림프구의 방사선에 의해 유발된 DNA 손상 측정)

  • Oh, Heon;Jung, Uhee;Park, Hae-Ran;Kim, Sung-Ho;Jo, Sung-Kee
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.1
    • /
    • pp.41-47
    • /
    • 2004
  • The alkaline single-cell gel electrophoresis (SCGE) assay, called the comet assay, has been applied to detect DNA damage induced by a number of chemicals and biological factors in vivo and in vitro. The DNA damage was analysed by tail moment (TM) and tail length (TL), which were markers of DNA strand breaks in SCGE. Human, mouse and rat peripheral blood lymphocytes (PBLs) were irradiated with different doses of $^{60}Co$ ${\gamma}$-rays, e.g. 1, 2, 4, and 8 Gy at a dose rate of 1 Gy/min. A dose-dependent increase in TM (p<0.01) and TL (p<0.01) was obtained at all the radiation doses (1-8 Gy) in human, mouse and rat PBLs. Mouse PBLs were more sensitive than human PBLs which were in turn more sensitive than rat PBLs when the treated dosages were 1 and 2 Gy. However, human PBLs were more sensitive than mouse PBLs which were in turn more sensitive than rat PBLs when the irradiation dosages were 4 and 8 Gy. Data from all three species could be fitted to a linear-quadratic model. These results indicated that there may be inherent differences in the radio-sensitivity among PBLs of mammalian species.