• 제목/요약/키워드: Simultaneous driving

검색결과 70건 처리시간 0.028초

후륜 인휠 모터 전기자동차의 구동 및 반능동 현가시스템 동시 제어를 통한 주행 성능 분석 (Driving Performance Analysis of a Rear In-wheel Motor Vehicle with Simultaneous Control of Driving Torque and Semi-active Suspension System)

  • 신슬기;최규재
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.11-17
    • /
    • 2015
  • Recently, the in-wheel motor vehicle is rapidly developed to solve energy exhaustion and environmental problems. Especially, it has the advantage of independently driving the torque control of each wheel in the vehicle. However, due to the weight increase of wheel, the comfort of vehicle riding and performance of road holding become worse. In this paper, to compensate the poor performance, a simultaneous control of the driving torque and semi-active suspension system is investigated. A vehicle model is generated using CarSim Software and validated by field tests. Co-simulation of CarSim and MATLAB/Simulink with control logics is carried out, and it is found that simultaneous control of the driving torque and semi-active suspension system can improve driving stability and durability of the in-wheel motor system.

공기압 실린더를 이용한 힘과 위치 동시 궤적 추적 제어 (Position and Force Simultaneous Trajectory Tracking Control with a Pneumatic Cylinder Driving System)

  • 조민수;장지성
    • 동력기계공학회지
    • /
    • 제7권3호
    • /
    • pp.40-47
    • /
    • 2003
  • In this study, position and force simultaneous trajectory tracking control apparatus with pneumatic cylinder driving system is proposed. The pneumatic cylinder driving system that consists of two pneumatic cylinders constrained in series and two proportional flow control valves offers a considerable advantage as to non-interaction of the actuators because of the low stiffness of the pneumatic actuators. The controller applied to the driving system is composed of a non-interaction controller to compensate for interaction of two cylinders and a disturbance observer to reduce the effect of model discrepancy of the driving system in the low frequency range that cannot be suppressed by the non-interaction controller. The experimental results with the proposed control apparatus show that the interacting effects of two cylinders are eliminated remarkably and the proposed control apparatus tracks the given position and force trajectory accurately.

  • PDF

Simultaneous and Multi-frequency Driving System of Ultrasonic Sensor Array for Object Recognition

  • Park, S.C.;Choi, B.J.;Lee, Y.J.;Lee, S.R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.582-587
    • /
    • 2004
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments, because they are cheap, easy to use, and robust under varying lighting conditions. However, the recognition of objects using a ultrasonic sensor is not so easy due to its characteristics such as narrow beam width and no reflected signal from a inclined object. As one of the alternatives to resolve these problems, use of multiple sensors has been studied. A sequential driving system needs a long measurement time and does not take advantage of multiple sensors. Simultaneous and pulse coding driving system of ultrasonic sensor array cannot measure short distance as the length of the code becomes long. This problem can be resolved by multi-frequency driving of ultrasonic sensors, which allows multi-sensors to be fired simultaneously and adjacent objects to be distinguished. Accordingly, this paper presents a simultaneous and multi-frequency driving system for an ultrasonic sensor array for object recognition. The proposed system is designed and implemented using a DSP and FPGA. A micro-controller board is made using a DSP, Polaroid 6500 ranging modules are modified for firing the multi-frequency signals, and a 5-channel frequency modulated signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances for each sensor were obtained from filtering of the received overlapping signals and calculation of the time-of-flights.

  • PDF

Simultaneous Trajectory Tracking Control of Position and Force with Pneumatic Cylinder Driving Apparatus

  • Jang Ji Seong
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1107-1115
    • /
    • 2005
  • In this study, a position and force simultaneous trajectory tracking control algorithm is proposed for a driving apparatus that consists of two pneumatic cylinders connected in series. The controller applied to the driving apparatus is composed of a non-interaction controller to compensate for interaction between cylinders and a disturbance observer aimed to reduce the effect of model discrepancy that cannot be compensated by the non-interaction controller. The effectiveness of the proposed control algorithm is proved by experimental results.

공기압 실린더 구동 장치를 이용한 힘과 위치 동시 제어계 설계 (Design of a Simultaneous Control System of Position and Force with a Pneumatic Cylinder Driving Apparatus)

  • 장지성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1614-1619
    • /
    • 2003
  • In this study, position and force simultaneous trajectory tracking control system with pneumatic cylinder driving apparatus is proposed. The pneumatic cylinder driving apparatus that consists of two pneumatic cylinders constrained in series and two proportional flow control valves offers a considerable advantage as to non-interaction of the actuators because of the low stiffness of the pneumatic cylinders. The controller applied to the driving system is composed of a non-interaction controller to compensate for interaction of two cylinders and a disturbance observer to reduce the effect of model discrepancy of the driving system in the low frequency range that cannot be suppressed by the non-interaction controller. The experimental results with the proposed control system show that the interacting effects of two cylinders are eliminated remarkably and the proposed control system tracks the given position and force trajectories accurately.

  • PDF

Incidence of Online Public Opinion on Guangzhou Simultaneous Renting and Purchasing Policy - A data mining application

  • Wang, Yancheng;Li, Haixian
    • Asian Journal for Public Opinion Research
    • /
    • 제5권4호
    • /
    • pp.266-284
    • /
    • 2018
  • This paper adopts the big data research method, and draws 491 data from the Tianya Forum about the Simultaneous Renting and Purchasing policy of Guangzhou. The qualitative analysis software Nvivo11 is used to cluster the main questions about the Simultaneous Renting and Purchasing policy in the forum. The 36 high-frequency word frequencies are obtained through text clustering. Through rooted theory analysis, the main driving factors for summarizing people's doubts are 9 main categories, 3 core categories, and the model of driving factors for online forums is established. The study finds that resource factors are the most key factor, economic factors are the important drivers, and policy guiding factors are sub-important drivers.

연립방정식을 이용한 운전유형별 회전교차로 사고모형 (Simultaneous Equation Models for Evaluating Roundabout Accidents According to Different Driving Types)

  • 김경환;박병호
    • 대한교통학회지
    • /
    • 제30권5호
    • /
    • pp.3-10
    • /
    • 2012
  • 이 연구는 회전교차로의 교통사고를 다루고 있다. 연구의 목적은 연립방정식을 이용한 회전교차로의 운전유형별 교통사고모형을 구축하는데 있다. 이를 위해 이 연구는 국내 회전교차로 39개소에서 발생한 148건의 사고자료와 통계 프로그램인 SPSS 17.0을 이용하였다. 또한 사고모형은 2SLS(2단계 최소자승) 추정법을 이용하여 구축하였다. 주요 결과는 다음과 같다. 첫째, 사고건수와 EPDO는 쌍방적 관계를 갖는 것으로 평가되었다. 둘째, 운전유형별로 개발된 6개의 연립방정식은 통계적으로 유의한 것으로 분석되었다. 셋째, 개발된 모형은 공통변수와 특정변수를 사용하여 비교 분석되었다. 마지막으로 독립변수에는 ADT, 상충비, 중차량 비율, 회전차로 폭, 회전차로 수, 접근로 차로폭, 접근로 평균 차로 수, 주차시설 유무 및 정류장 유무가 채택되었다.

Simultaneous and Coded Driving System of Ultrasonic Sensor Array for Object Recognition in Autonomous Mobile Robots

  • Kim, Ch-S.;Choi, B.J.;Park, S.H.;Lee, Y.J.;Lee, S.R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2519-2523
    • /
    • 2003
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments, because they are cheap, easy to use, and robust under varying lighting conditions. In most cases, a single ultrasonic sensor is used to measure the distance to an object based on time-of-flight (TOF) information, whereas multiple sensors are used to recognize the shape of an object, such as a corner, plane, or edge. However, the conventional sequential driving technique involves a long measurement time. This problem can be resolved by pulse coding ultrasonic signals, which allows multi-sensors to be fired simultaneously and adjacent objects to be distinguished. Accordingly, the current presents a new simultaneous coded driving system for an ultrasonic sensor array for object recognition in autonomous mobile robots. The proposed system is designed and implemented using a DSP and FPGA. A micro-controller board is made using a DSP, Polaroid 6500 ranging modules are modified for firing the coded signals, and a 5-channel coded signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances for each sensor were obtained from the received overlapping signals using correlations and conversion to a bipolar PCM-NRZ signal.

  • PDF

코드를 이용한 초음파 동시구동 시스템 (Simultaneous Driving System of Ultrasonic Sensors Using Codes)

  • 김춘승;최병준;이상룡;이연정
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1028-1036
    • /
    • 2004
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments by virtue that they are cheap, easy to use, and robust under varying lighting conditions. In most cases, a single ultrasonic sensor is used to measure the distance to an object based on time-of-flight (TOF) information, whereas multiple sensors are used to recognize the shape of an object, such as a comer, plane, or edge. However, the conventional sequential driving technique involves a long measurement time. This problem can be resolved by pulse coding of ultrasonic signals, which allows multi-sensors to be emitted simultaneously and adjacent objects to be distinguished. Accordingly, this paper presents a new simultaneous coded driving system for an ultrasonic sensor array for object recognition in autonomous mobile robots. The proposed system is designed and implemented. A micro-controller unit is implemented using a DSP, Polaroid 6500 ranging modules are modified for firing the coded signals, and a 5-channel coded signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances fur each sensor were obtained from the received overlapping signals using correlations and conversion to a bipolar PCM-NRZ signal.

ROS 기반의 지하광산용 자율주행 로봇 개발과 경유지 주행 실험 (Development of a ROS-Based Autonomous Driving Robot for Underground Mines and Its Waypoint Navigation Experiments)

  • 김헌무;최요순
    • 터널과지하공간
    • /
    • 제32권3호
    • /
    • pp.231-242
    • /
    • 2022
  • 본 연구에서는 지하광산에서 로봇의 위치를 추정하고, 여러 경유지를 거쳐 주행한 후 원위치로 복귀하는 ROS (Robot Operating System) 기반의 자율주행 로봇을 개발하였다. 자율주행 로봇은 SLAM (Simultaneous Localization And Mapping) 기술을 활용하여 주행 경로에 대한 전역 지도를 사전에 생성한다. 이후, 라이다 센서를 통해 측정되는 벽면의 형태와 전역 지도를 매칭하고 AMCL (Adaptive Monte Carlo Localization) 기법을 통해 데이터들을 융합하여 로봇의 위치를 보정한다. 또한, 라이다 센서를 통해 전방 주행환경을 인지하고, 장애물을 회피한다. 개발된 자율주행 로봇을 활용하여 지하광산 현장을 모사한 실내 실험장을 대상으로 주행 실험을 수행하였다. 그 결과, 자율주행 로봇은 다중 지점의 경유지에 대해 순차적으로 주행하고 장애물을 회피하며 안정적으로 복귀하는 것을 확인할 수 있었다.