• Title/Summary/Keyword: Simultaneous Pickup and Delivery

Search Result 2, Processing Time 0.02 seconds

A Hybrid Genetic Algorithm for the Location-Routing Problem with Simultaneous Pickup and Delivery

  • Karaoglan, Ismail;Altiparmak, Fulya
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.24-33
    • /
    • 2011
  • In this paper, we consider the Location-Routing Problem with simultaneous pickup and delivery (LRPSPD) which is a general case of the location-routing problem. The LRPSPD is defined as finding locations of the depots and designing vehicle routes in such a way that pickup and delivery demands of each customer must be performed with same vehicle and the overall cost is minimized. Since the LRPSPD is an NP-hard problem, we propose a hybrid heuristic approach based on genetic algorithms (GA) and simulated annealing (SA) to solve the problem. To evaluate the performance of the proposed approach, we conduct an experimental study and compare its results with those obtained by a branch-and-cut algorithm on a set of instances derived from the literature. Computational results indicate that the proposed hybrid algorithm is able to find optimal or very good quality solutions in a reasonable computation time.

A Simultaneous Delivery and Pick-up Heterogeneous Vehicle Routing Problem with Separate Loading Area (다품종 독립 적재공간을 갖는 배달과 수거를 동시에 고려한 차량경로문제)

  • Kim, Gak-Gyu;Kim, Seong-Woo;Kim, Seong-Woo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.6
    • /
    • pp.554-561
    • /
    • 2013
  • As a special topic of the vehicle routing problems (VRP), VRPSDP extends the vehicle routing problem as considering simultaneous pickup and delivery for goods. The past studies have mainly dealt with a only weight constraint of a loading capacity for heterogeneous products. However. this study suggests VRPSDP considering separate loading area according to characteristics of loading species. The objective is to design a set of minimum distance routes for the vehicle routing assignment with independent capacity for heterogeneous species. And then we present a another HVRPSDP model which is easy to utilizes in a unique circumstance that is a guarantee of executing a task simultaneously from the various areas under restricted time and raising an application of vehicles that returns at the depot for the next mission like the military group. The optimal results of the suggested mathematical models are solved by the ILOG CPLEX software ver. 12.4 that is provided by IBM company.