• Title/Summary/Keyword: Simultaneous PET-MRI

Search Result 6, Processing Time 0.024 seconds

Evaluation of Combined Contrast Agent using N-(p-maleimidophenyl) Isocyanate Linker-mediated Synthesis for Simultaneous PET-MRI (동시 PET-MRI를 위한 N-(p-maleimidophenyl) isocyanate linker-매개 합성을 이용한 복합 조영제의 평가)

  • Lee, Gil-Jae;Lee, Hwun-Jae;Lee, Tae-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.2
    • /
    • pp.103-113
    • /
    • 2022
  • In this paper, a combined 18F-FDG(fluorodeoxyglucose) and MNP(magnetic nanoparticles) contrast agent was synthesized using N-(p-maleimidophenyl) isocyanate as the crosslinker for use in simultaneous PET-MRI scans. PET-MRI images were acquired and evaluated before and after injection of the combined contrast imaging agent (18F-FDG labeled MNP) from a glioma stem cell mouse model. After setting the region of interest (ROI) on each acquired image, the area of the lesion was calculated by segmentation. As a result, the PET image was larger than the MRI. In particular, the simultaneous PET-MRI images showed accurate lesions along with the surrounding soft tissue. The mean and standard deviation values were higher in the MRI images alone than in the PET images or the simultaneous PET-MRI images, regardless of whether the contrast agent was injected. In addition, the simultaneous PET-MRI image values were higher than for the PET images. For PSNR experiments, the original image was PET Image using 18F-FDG, MRI using MNPs, and MRI without contrast medium, and the target image was simultaneous PET-MRI image using 18F-FDG labeled MNPs contrast medium. As a result, all of them appeared significantly, suggesting that the 18F-FDG labeled MNPs contrast medium is useful. Future research is needed to develop an agent that can simultaneously diagnose and treat through SPECT-MRI imaging research that can use various nuclides.

Comparison of SUV for PET/MRI and PET/CT (인체 각 부위의 PET/MRI와 PET/CT의 SUV 변화)

  • Kim, Jae Il;Jeon, Jae Hwan;Kim, In Soo;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.10-14
    • /
    • 2013
  • Purpose: Due to developed simultaneous PET/MRI, it has become possible to obtain more anatomical image information better than conventional PET/CT. By the way, in the PET/CT, the linear absorption coefficient is measured by X-ray directly. However in case of PET/MRI, the value is not measured from MRI images directly, but is calculated by dividing as 4 segmentation ${\mu}-map$. Therefore, in this paper, we will evaluate the SUV's difference of attenuation correction PET images from PET/MRI and PET/CT. Materials and Methods: Biograph mCT40 (Siemens, Germany), Biograph mMR were used as a PET/CT, PET/MRI scanner. For a phantom study, we used a solid type $^{68}Ge$ source, and a liquid type $^{18}F$ uniformity phantom. By using VIBE-DIXON sequence of PET/MRI, human anatomical structure was divided into air-lung-fat-soft tissue for attenuation correction coefficient. In case of PET/CT, the hounsfield unit of CT was used. By setting the ROI at five places of each PET phantom images that is corrected attenuation, the maximum SUV was measured, evaluated %diff about PET/CT vs. PET/MRI. In clinical study, the 18 patients who underwent simultaneous PET/CT and PET/MRI was selected and set the ROI at background, lung, liver, brain, muscle, fat, bone from the each attenuation correction PET images, and then evaluated, compared by measuring the maximum SUV. Results: For solid $^{68}Ge$ source, SUV from PET/MRI is measured lower 88.55% compared to PET/CT. In case of liquid $^{18}F$ uniform phantom, SUV of PET/MRI as compared to PET/CT is measured low 70.17%. If the clinical study, the background SUV of PET/MRI is same with PET/CT's and the one of lung was higher 2.51%. However, it is measured lower about 32.50, 40.35, 23.92, 13.92, 5.00% at liver, brain, muscle, fat, femoral head. Conclusion: In the case of a CT image, because there is a linear relationship between 511 keV ${\gamma}-ray$ and linear absorption coefficient of X-ray, it is possible to correct directly the attenuation of 511 keV ${\gamma}-ray$ by creating a ${\mu}$map from the CT image. However, in the case of the MRI, because the MRI signal has no relationship at all with linear absorption coefficient of ${\gamma}-ray$, the anatomical structure of the human body is divided into four segmentations to correct the attenuation of ${\gamma}-rays$. Even a number of protons in a bone is too low to make MRI signal and to localize segmentation of ${\mu}-map$. Therefore, to develope a proper sequence for measuring more accurate attenuation coefficient is indeed necessary in the future PET/MRI.

  • PDF

Comparison of PET/MR image quality with and without point spread function algorithm according to reconstruction type (재구성 방법(점 확산함수 적용 유무)에 따른 PET/MR 영상 평가)

  • Park, Chan Rok;Moon, Il Sang;Noh, Gyeong Woon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.43-45
    • /
    • 2018
  • Purpose In this study, we evaluated image by applying with and without point spread function algorithm(PSF) according to reconstruction type. Materials and Methods Biograph mMR (Siemens, Germany) was used as PET/MR scanner. For phantom study, we used NEMA IEC Body phantom maintaining radioactivity ratio (hotsphere:background = 8:1). To evaluate phantom image quality, percent contrast recovery and signal to noise ratio (SNR) were used by drawing ROI to 4 spheres. In clinical study, the 20 patients who underwent simultaneous PET/MR was selected and set the ROI at liver. we evaluated images as SNR. Results In the phantom results, The percent contrast recovery applying PSF algoritm was high 5 % compared to without PSF algoritm and SNR was also high 11 %. In the clinical study result, we confirmed that The SNR applying PSF algoritm was high 5 % compared to without PSF algoritm. Conclusion We need to simulate a lot of phantom study and clinical analysis to improve image quality for PET/MRI.

Management for locally advanced cervical cancer: new trends and controversial issues

  • Cho, Oyeon;Chun, Mison
    • Radiation Oncology Journal
    • /
    • v.36 no.4
    • /
    • pp.254-264
    • /
    • 2018
  • This article reviewed new trends and controversial issues, including the intensification of chemotherapy and recent brachytherapy (BT) advances, and also reviewed recent consensuses from different societies on the management of locally advanced cervical cancer (LACC). Intensive chemotherapy during and after radiation therapy (RT) was not recommended as a standard treatment due to severe toxicities reported by several studies. The use of positron emission tomography-computed tomography (PET-CT) and magnetic resonance imaging (MRI) for pelvic RT planning has increased the clinical utilization of intensity-modulated radiation therapy (IMRT) for the evaluation of pelvic lymph node metastasis and pelvic bone marrow. Recent RT techniques for LACC patients mainly aim to minimize toxicities by sparing the normal bladder and rectum tissues and shortening the overall treatment time by administering a simultaneous integrated boost for metastatic pelvic lymph node in pelvic IMRT followed by MRI-based image guided adaptive BT.

Fusion of 3D Cardiac SPECT and 64-Channel-CT Angiography Using Personal Computer in Functionally Relevant Coronary Artery Stenosis (개인용 컴퓨터를 이용한 기능 유관성 관상동맥 협착증의 삼차원 심장스펙트 사진과 64채널 전산화 단층 혈관촬영사진과의 융합)

  • Bahk, Yong-Whee
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.3
    • /
    • pp.252-254
    • /
    • 2007
  • Image fusion is fast catching attention as Wagner pointed out in his 2006 version of the recent progress and development presented at the annual meeting of Society of Nuclear Medicine. Prototypical fusion of bone scan and radiograph was already attempted at in 1961 when Fleming et al. published an article on strontium-85 bone scan. They simply superimposed dot scan on radiograph enabling simultaneous assessment of altered bone metabolism and local bone anatomy. Indeed the parallel reading of images of bone scan and radiography, CT, MRI or ultrasonography has been practiced in nuclear medicine long since. It is fortunate that recent development of computer science and technology along with the availability of refined CT and SPECT machines has permitted us to open a new avenue to digitally produce precise fusion image so that they can readily be read, exchanged and disseminated using internet. Ten years ago fusion was performed using Bresstrahlung SPECT/CT and it is now achievable by PET/CT and SPECT/CT software and SPECT/CT hardware. The merit of image fusion is its feasibility of reliable assessment of morphological and metabolic change. It is now applicable not only to stationary organs such as brain and skeleton but also to moving organs such as the heart, lung and stomach. Recently, we could create useful fusion image of cardiac SPECT and 64-channel CT angiograph. The former provided myocardial metabolic profile and the latter vascular narrowing in two patients with coronary artery stenosis and myocardial ischemia. Arterial stenosis was severe in Case 1 and mild in Case 2.

Surgical Strategies in Patients with the Supplementary Sensorimotor Area Seizure

  • Oh, Young-Min;Koh, Eun-Jeong;Lee, Woo-Jong;Han, Jeong-Hoon;Choi, Ha-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.5
    • /
    • pp.323-329
    • /
    • 2006
  • Objective : This study was designed to analyze surgical strategies for patients with intractable supplementary sensorimotor area[SSMA] seizures. Methods : Seventeen patients who had surgical treatment were reviewed retrospectively. Preoperatively, phase I [non-invasive] and phase II [invasive] evaluation methods for epilepsy surgery were done. Seizure outcome was assessed with Engel's classification. The mean follow-up period was 27.2 months [from 12 months to 54 months]. Results : An MRI identified structural abnormality in eight patients and 3D-surface rendering revealed abnormal gyration in three. PET, SPECT, and surface EEG could not delineate the epileptogenic zone. Video-EEG monitoring with a subdural grid or depth electrodes verified the epileptogenic zone in all patients. Surgical procedures consisted of a resection of the SSMA and simultaneous callosotomy in two patients, a resection of the SSMA extending to the adjacent area in seven, a resection of a different area without a SSMA resection in seven, and a callosotomy in one. Seizure outcomes were class I in 11 [65%]. class II in five [29%], class III in one [6%]. Conclusion : In patients with intractable SSMA seizure, surgery was an excellent treatment modality. Precise delineation of the epileptogenic zone based on multimodal diagnostic methods can provide good surgical outcomes without neurological complications.