• Title/Summary/Keyword: Simulink model

Search Result 558, Processing Time 0.024 seconds

Modeling and Simulation of New Encoding Schemes for High-Speed UHF RFID Communication

  • Mo, Sang-Hyun;Bae, Ji-Hoon;Park, Chan-Won;Bang, Hyo-Chan;Park, Hyung Chul
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.241-250
    • /
    • 2015
  • In this paper, we present novel high-speed transmission schemes for high-speed ultra-high frequency (UHF) radio-frequency identification communication. For high-speed communication, tags communicate with a reader using a high-speed Miller (HS-Miller) encoding and multiple antennas, and a reader communicates with tags using extended pulse-interval encoding (E-PIE). E-PIE can provide up to a two-fold faster data rate than conventional pulse-interval encoding. Using HS-Miller encoding and orthogonal multiplexing techniques, tags can achieve a two- to three-fold faster data rate than Miller encoding without degrading the demodulation performance at a reader. To verify the proposed transmission scheme, the MATLAB/Simulink model for high-speed backscatter based on an HS-Miller modulated subcarrier has been designed and simulated. The simulation results show that the proposed transmission scheme can achieve more than a 3 dB higher BER performance in comparison to a Miller modulated subcarrier.

Implementation and Comparison of Controllers for Planar Robots

  • Kern, John;Urrea, Claudio;Torres, Hugo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.926-936
    • /
    • 2017
  • The nonlinear behavior and the high performance requirement are the main problems that appear in the design of manipulator robots and their controllers. For that reason, the simulation, real-time execution and comparison of the performance of controllers applied to a robot with three degrees of freedom are presented. Five controllers are prepared to test the robot's dynamic model: predictive; hyperbolic sine-cosine; sliding mode; hybrid composed of a predictive + hyperbolic sine-cosine controller; and adaptive controller. A redundant robot, a communication and signal conditioning interface, and a simulator are developed by means of the MatLab/Simulink software, which allows analyzing the dynamic performance of the robot and of the designed controllers. The manipulator robot is made to follow a test trajectory which, thanks to the proposed controllers, it can do. The results of the performance of this manipulator and of its controllers, for each of the three joints, are compared by means of RMS indices, considering joint errors according to the imposed trajectory and to the controller used.

Fault Detection and Diagnosis System for a Three-Phase Inverter Using a DWT-Based Artificial Neural Network

  • Rohan, Ali;Kim, Sung Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.238-245
    • /
    • 2016
  • Inverters are considered the basic building blocks of industrial electrical drive systems that are widely used for various applications; however, the failure of electronic switches mainly affects the constancy of these inverters. For safe and reliable operation of an electrical drive system, faults in power electronic switches must be detected by an efficient system that is capable of identifying the type of faults. In this paper, an open switch fault identification technique for a three-phase inverter is presented. Single, double, and triple switching faults can be diagnosed using this method. The detection mechanism is based on stator current analysis. Discrete wavelet transform (DWT) using Daubechies is performed on the Clarke transformed (-) stator current and features are extracted from the wavelets. An artificial neural network is then used for the detection and identification of faults. To prove the feasibility of this method, a Simulink model of the DWT-based feature extraction scheme using a neural network for the proposed fault detection system in a three-phase inverter with an induction motor is briefly discussed with simulation results. The simulation results show that the designed system can detect faults quite efficiently, with the ability to differentiate between single and multiple switching faults.

Design, Development and Analysis of Embedded Systems for Condition Monitoring of Rotating Machines using FFT Algorithm

  • Dessai, Sanket;Naaz, Zakiyaunnissa Alias Naziya
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.428-432
    • /
    • 2014
  • Rotating machines are an integral part of large electrical power machinery in most of the industries. Any degradation or outages in the rotating electric machinery can result in significant losses in productivity. It is critical to monitor the equipment for any degradation's so that it can serve as an early warning for adequate maintenance activities and repair. Prior research and field studies have indicated that the rotating machines have a particular type of signal structure during the initial start-up transient. A machine performance can be studied based on the effect of degradation in signal parameters. In this paper a data-acquisition system and the FFT algorithm has been design and model using the MATLAB and Simulink. The implementation had been carried out on the TMS320 DSP Processor and various testing and verification of the machine performance had been carried out. The results show good agreement with expected results for both simulated and real-time data. The real-time data from AC water pumps which have rotating motors built-in were collected and analysed. The FFT algorithm provides frequency response and based on this frequency response performance of the machine had been measured.The FFT algorithm provides only approximation about the machine performances.

Stability Enhancement of Four-in-Wheel Motor-Driven Electric Vehicles Using an Electric Differential System

  • Hartani, Kada;Merah, Abdelkader;Draou, Azeddine
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1244-1255
    • /
    • 2015
  • This paper presents a new multi-machine robust control based on an electric differential system for electric vehicle (EV) applications which is composed of four in-wheel permanent magnet synchronous motors. It is based on a new master-slave direct torque control (DTC) algorithm, which is used for the control of bi-machine traction systems based on a speed model reference adaptive system observer. The use of an electric differential in the design of a new EV constitutes a technological breakthrough. A classical system with a multi-inverter and a multi-machine comprises a three-phase inverter for each machine to be controlled. Another approach consists of only one three-phase inverter for several permanent magnet synchronous machines. The control of multi-machine single-inverter systems is the subject of this study. Several methods have been proposed for the control of multi-machine single-inverter systems. In this study, a new master-slave based DTC strategy is developed to generate an electric differential system. The entire system is simulated by Matlab/Simulink. The simulation results show the effectiveness of the new multi-machine robust control based on an electric differential system for use in EV applications.

Biomechanical study of the Spider Crab as inspiration for the development of a biomimetic robot

  • Rynkevic, Rita;Silva, Manuel F.;Marques, M. Arcelina
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.4
    • /
    • pp.249-269
    • /
    • 2015
  • A problem faced by oil companies is the maintenance of the location register of pipelines that cross the surf zone, the regular survey of their location, and also their inspection. A survey of the state of art did not allow identifying operating systems capable of executing such tasks. Commercial technologies available on the market also do not address this problem and/or do not satisfy the presented requirements. A possible solution is to use robotic systems which have the ability to walk on the shore and in the surf zone, subject to existing currents and ripples, and being able to withstand these ambient conditions. In this sense, the authors propose the development of a spider crab biologically inspired robot to achieve those tasks. Based on these ideas, this work presents a biomechanical study of the spider crab, its modeling and simulation using the SimMechanics toolbox of Matlab/Simulink, which is the first phase of this more vast project. Results show a robot model that is moving in an "animal like" manner, the locomotion, the algorithm presented in this paper allows the crab to walk sideways, in the desired direction.

Dynamic Analysis of Variable Speed Wind Power Systems with Doubly-Fed Induction Generators (이중여자 유도발전기에 의한 가변속 풍력 발전시스템의 동특성 해석)

  • Choi, Jang-Young;Jang, Seok-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.6
    • /
    • pp.325-336
    • /
    • 2006
  • This paper deals with the dynamic analysis of variable speed wind power systems with doubly-fed induction generators (DFIG). First, the mathematical modeling of wind farm which consists of turbine rotor, DFIG, rotor side and grid side converter and control systems is presented. In particular, the equation for dynamic modeling of the DFIG and the AC/DC/AC converter is expressed as dq reference frame. And then, on the basis of mathematical modeling for each component of wind farm, dynamic simulation algorithms for speed and pitch angle control of wind turbine and generated active and reactive power control of the DFIG and the AC/DC/AC converter are established. Finally, Using the MATLAB/SIMULINK, this paper presents dynamic simulation model for 6MW wind power generation systems with the DFIG considering distribution systems and performs the dynamic analysis of wind power systems in steady state. Moreover, this paper also presents the dynamic performance for the case when the voltage sag in grid source and phase fault in bus are occurred.

Physical Prototyping Model based Development Environment for Hard Real-Time Control Systems (경성 실시간 제어 시스템을 위한 실물 프로토타이핑 모델 기반 개발 환경)

  • Kim, Dong-Hoon;Jun, Sang-Ho;Kang, Soon-Ju
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.55-58
    • /
    • 2011
  • 본 논문에서는 경성 실시간 제어 시스템 개발의 어려움을 해결하고자 실물 프로토타이핑(Physical Prototyping) 기법을 적용한 임베디드 실시간 시스템 소프트웨어 개발 방법론에 적합한 개발 환경을 구현하였다. 그리고 이를 검증하기 위한 사례연구로서 두 바퀴 형태의 이동 로봇의 설계 및 구현과 실험을 통해 검증한다. 제안한 개발 환경은 크게 3 단계의 개발환경으로 구성되어 있다. 첫 번째는 타겟 시스템의 요구 분석 및 시스템 모델링을 설계하는 가상 프로토타이핑 개발 환경이다. 두 번째는 실물 프로토타이핑 모델을 설계하여 기능 및 성능에 대한 검증을 하는 실물 프로토타이핑 개발 환경이다. 마지막으로 이러한 검증 단계를 지속적으로 거치면서 점증적으로 소프트웨어를 구현하는 응용분야 적응형 점증적 프로토타이핑 개발 환경이 있다. 또한, Matlab, Simulink, 유비노스 아키텍처 및 이클립스 기반의 통합 개발 환경, ESPS 모바일 보드를 사용하여 경성 실시간 제어 시스템의 설계 및 구현, 성능 검증을 통해 제안한 개발 환경의 유효성을 입증한다.

A Robust Fault Location Algorithm for Single Line-to-ground Fault in Double-circuit Transmission Systems

  • Zhang, Wen-Hao;Rosadi, Umar;Choi, Myeon-Song;Lee, Seung-Jae;Lim, Il-Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • This paper proposes an enhanced noise robust algorithm for fault location on double-circuit transmission line for the case of single line-to-ground (SLG) fault, which uses distributed parameter line model that also considers the mutual coupling effect. The proposed algorithm requires the voltages and currents from single-terminal data only and does not require adjacent circuit current data. The fault distance can be simply determined by solving a second-order polynomial equation, which is achieved directly through the analysis of the circuit. The algorithm, which employs the faulted phase network and zero-sequence network with source impedance involved, effectively eliminates the effect of load flow and fault resistance on the accuracy of fault location. The proposed algorithm is tested using MATLAB/Simulink under different fault locations and shows high accuracy. The uncertainty of source impedance and the measurement errors are also included in the simulation and shows that the algorithm has high robustness.

Test Platform Development of Vessel's Power Management System Using Hardware-in-the-Loop Simulation Technique

  • Lee, Sang-Jung;Kwak, Sang-Kyu;Kim, Sang-Hyun;Jeon, Hyung-Jun;Jung, Jee-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2298-2306
    • /
    • 2017
  • A PMS (Power Management System) controls vessel's power systems to improve the system efficiency and to protect a blackout condition. The PMS should be developed with considering the type and the capacity of the vessel's power system. It is necessary to test the PMS functions developed for vessel's safe operations under various sailing situations. Therefore, the function tests in cooperation with practical power systems are required in the PMS development. In this paper, a hardware-in-the-loop (HIL) simulator is developed for the purposes of the PMS function tests. The HIL simulator can be more cost-effective, more time-saved, easier to reproduce, and safer beyond the normal operating range than conventional off-line simulators, especially at early stages in development processes or during fault tests. Vessel's power system model is developed by using a MATLAB/SIMULINK software and by communicating between an OPAL-RT's OP5600 simulator. The PMS uses a Modbus communication protocol implemented using LabVIEW software. Representative tests of the PMS functions are performed to verify the validity of the proposed HIL-based test platform.