• Title/Summary/Keyword: Simulink model

Search Result 558, Processing Time 0.027 seconds

Analysis of Doubly Fed Variable-Speed Pumped Storage Hydropower Plant for Fast Response (빠른 응답성을 갖는 가변속 DFIM 분석)

  • Sun, Jinlei;Seo, Joungjin;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.425-430
    • /
    • 2022
  • A pumped storage power station is an important means to solve the problem of peak load regulation and ensures the safety of power grid operation. The doubly fed variable-speed pumped storage (DFVSPS) system adopts a doubly fed induction machine (DFIM) to replace the synchronous machine used in traditional pumped storage. The stator of DFIM is connected to the power grid, and the three-phase excitation windings are symmetrically distributed on the rotor. Excitation current is supplied by the converter. The active and reactive power of the unit can be quickly adjusted by adjusting the amplitude, frequency, and phase of the rotor-side voltage or current through the converter. Compared with a conventional pumped storage hydropower station (C-PSH), DFVSPS power stations have various operating modes and frequent start-up and shutdown. This study introduces the structure and principle of the DFVSPS unit. Mathematical models of the unit, including a model of DFIM, a model of the pump-turbine, and a model of the converter and its control, are established. Fast power control strategies are proposed for the unit model. A 300 MW model of the DFVSPS unit is established in MATLAB/Simulink, and the response characteristics in generating mode are examined.

Response Surface Tuning Methods in PID Control of the Magnetic Levitation Conveyor System (반응 표면법을 이용한 자기부상 반송장치의 PID 이득값 조정)

  • Bae, Kyu-Young;Kim, Chang-Hyun;Kim, Bong-Seup
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2609-2614
    • /
    • 2011
  • A proportional integral derivative (PID) controller is designed and applied to a magnetic levitation conveyor system to control the levitation gap length of the electromagnet constantly. The PID gain parameters are optimized by response surface methods (RSM). The controller is verified with the state-space model of electromagnetic suspension by MATLAB/SIMULINK program. And, the controller and the state-space model are also verified experimentally. Simulation and experimental results shows the effectiveness of the PID gain tuning by RSM as compared with the classical PID tuning.

  • PDF

Design of Test Equipment for LSM Section Switching Test (장계자형 LSM 섹션전환용 시험장치 설계)

  • Jo, Jeong-Min;Han, Young-Jae;Lee, Chang-Young;Cho, Ju-Hyun;Choi, Seong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2383-2388
    • /
    • 2011
  • LSMs are installed under girders along the long track. In order to improve the efficiency of the LSM, long stator LSM should be divided into the specified length and the propulsion inverters should have the system topology to generate high voltage and current for LSMs. This paper presents a system topology with two-step inverter in order to generate high voltage in inverter. A LSM propulsion system is developed and implemented in Maltab/Simulink. A system model of the two-step Inverter is applied to developed model. This paper demonstrates through simulation, advantages of multi-step inverter. The conclusions can serve the design of LSM propulsion system.

  • PDF

Simulation and Experiment of Dynamic Torsional Vibration during Grid Low Voltage in a PMSG Wind Power Generation System (PMSG 풍력발전시스템에서 전원 저전압 발생시 비틀림 진동 동특성 시뮬레이션 및 실험)

  • Kwon, Sun-Hyung;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.211-216
    • /
    • 2013
  • A wind generator system model includes wind model, rotor dynamics, synchronous generator, power converter, distribution line and infinite bus. This paper investigates the low-Voltage Ride-Through capability of PMSG wind turbine in a variable speed. The drive train of a wind turbine on 2-mass modeling can observe the shaft torsional vibration when the low-voltage occur. To reduce the torsional vibration when the low-voltage occur, this paper designs suppression control algorithm of the torsional vibration and implements simulation. The simulation based on MATLAB/SIMULINK has validated at the transient state of the PMSG and an experiment using 3kW simulator has validated the LVRT control.

Modeling and Analysis of 7-Phase BLDC Motor Drives (7상 BLDC 전동기 구동시스템 해석 및 설계)

  • Song, Sang-Hoon;Yoon, Yong-Ho;Lee, Byoung-Kuk;Won, Chung-Yuen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.575-582
    • /
    • 2014
  • In this paper, a simulation model for 7-phase BLDC motor drives for an Autonomous Underwater Vehicles (AUV) is proposed. A 7-phase BLDC motor is designed and the electrical characteristics are analyzed using FEA program and the power electronics drives for the 7-phase BLDC motor are theoretically analyzed and the actual implementation has been accomplished using Matlab Simulink. PI controller is used for verifying the validity of the proposed model and the informative results are described in detail.

Co-Simulation Technology Development with Electric Power Steering System and Full Vehicle (전동 조향 장치와 차량의 동시 시뮬레이션 기술 개발)

  • 장봉춘;소상균
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.94-100
    • /
    • 2004
  • Most power steering systems obtain the power by a hydraulic mechanism. Therefore, it consumes more energy because the oil power should be sustained all the times. Recently, to solve this problem the electric power system has been developed and become widely equipped in passenger vehicles. In this research the simulation integration technique for an electric power steering system with MATLAB/SIMULINK and a full vehicle model with ADAMS has been developed. A full vehicle model interacted with electronic control unit algorithm is concurrently simulated with an impulsive steering wheel torque input. The dynamic responses of vehicle chassis and steering system are evaluated. This integrated method allows engineers to reduce the prototype testing cost and to shorten the developing period.

System Design for LSM Section Switching Test (LSM 섹션전환시험을 위한 시스템 설계)

  • Jo, Jeong-Min;Han, Young-Jae;Lee, Chang-Young;Shin, Seung-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1258-1259
    • /
    • 2011
  • LSMs are installed under girders along the long track. In order to improve the efficiency of the LSM, long stator LSM should be divided into the specified length and the propulsion inverters should have the system topology to generate high voltage and current for LSMs. This paper presents a system topology with two-step inverter in order to generate high voltage in inverter. A LSM propulsion system is developed and implemented in Maltab/Simulink. A system model of the two-step Inverter is applied to developed model. This paper demonstrates through simulation, advantages of multi-step inverter. The conclusions can serve the design of LSM propulsion system.

  • PDF

Optimal Operation Methods of Protection Devices in Distribution Systems with PV Systems (태양광전원의 연계에 의한 배전계통 보호기기의 최적 운용방안에 관한 연구)

  • Kim, Byeon-Gi;Park, Jae-Beom;You, Kyeong-Sang;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1485-1491
    • /
    • 2011
  • This paper deals with the technical problems for the protection devices, by simulating test facilities of protection coordination for Photovoltaic systems. In order to analyze the operation characteristics for the protection devices in the case that the Photovoltaic systems with bi-directional power supply are located in the feeder, this paper proposes the test facilities composed of model distribution system, protection device and model Photovoltaic systems. By performing the simulation for operation characteristics for the protection devices based on the test facilities, this paper presents the malfunction mechanism for the protection devices. The test results show that this paper is practical and effective for the technical guideline for the Photovoltaic systems.

Simulation of Dynamic Torsional Vibration during Grid Low Voltage in a PMSG Wind Power Generation System (PMSG 풍력발전시스템에서 전원 저전압 발생시 비틀림 진동 동특성 시뮬레이션)

  • Kwon, Sun-Hyung;Song, Seung-Ho;Choi, Ju-Yeop;Jeong, Seung-Gi;Choy, Ick
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.242-244
    • /
    • 2011
  • A wind generator system model includes wind model, rotor dynamics, synchronous generator, power converter, distribution line and infinite bus. This paper investigates the low-Voltage Ride-Through capability of PMSG wind turbine in a variable speed. The drive train of a wind turbine on 2-mass modeling can observe the shaft torsional vibration when the low-voltage occur. To reduce the torsional vibration when the low-voltage occur, this paper designs suppression control algorithm of the torsional vibration and implements simulation. A Matlab/Simulink is used to investigate the response during the transient state.

  • PDF

A Controller Design for Speed Control of the Switched Reluctance Motor in the Train Propulsion System (열차추진시스템에서 Switched Reluctance Motor의 속도제어를 위한 제어기 설계)

  • Kim, Sung-Soo;Kim, Min-Seok;Lee, Jong-Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.138-143
    • /
    • 2011
  • Electric locomotive is adapted to high speed driving and mass transportation due to obtaining high traction force. The electric locomotive is operated by motor blocks and traction motors. Train speed is controlled by suppling power from motor blocks to traction motors according to reference speed. Speed control of the electric locomotive is efficient by spending energy between motor blocks and traction motors. Currently, switched reluctance motors have been studied because the efficient is higher than induction motors. In this paper, model of the switched reluctance motor is presented and the PID controller is applied to the model for the speed control by using Simulink. Asymmetry converter is used for real-time control and system performance is demonstrated by simulating the speed of switched reluctance motor including PID controller.