• Title/Summary/Keyword: Simulator-based evaluation

Search Result 277, Processing Time 0.025 seconds

Preliminary Design and Development Framework of Railway Vehicle Simulator for Engineering Evaluation Analysis

  • Kim, Hong-Chan;Kim, Jeung-Tae
    • International Journal of Railway
    • /
    • v.4 no.1
    • /
    • pp.5-11
    • /
    • 2011
  • The purpose of the present study is to develop conceptual design of a railway vehicle simulator based on a scaled model. Although the scaled simulator is limited in its ability to manipulate the full dynamics of a full-size railway vehicle, it has been known to have an advantage in that it could provide means of testing the fundamental dynamic behavior within a limited laboratory space and at low operation cost. The present study proposes a design strategy for a simulator so that a small scaled roller rig could be fabricated and operated in laboratory setting based on the design philosophy. The data obtained from experimental testing using a scale model can be used to verify and interpret the dynamic performance of full-scale railway vehicle by applying appropriate non-dimensional analysis.

A Study on the Direction of Developing a Simulator for Performance Evaluation of Pulse Wave Detectors Through a Review of the Development Status of Cardiovascular Simulators (심혈관계 시뮬레이터 개발 동향 분석을 통한 맥파검사용기기 성능평가 시뮬레이터 연구개발 방향 모색)

  • Lee, Ju-Yeon;Kim, Jaeyoung;Go, Dong-Hyun;Lee, Ji-Won;Lee, Tae-Hee;Park, Chang-Won;Lee, Su-Kyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.136-146
    • /
    • 2022
  • In this study, it is intended to provide basic data that can help develop a cardiovascular simulator for performance evaluation of pulse wave detectors by identifying the development status of domestic and overseas cardiovascular simulators. A total of 119 papers were selected by excluding duplicate literature, gray literature, and literature not related to a cardiovascular simulator. Based on the selected literature, the research trend of cardiovascular simulators was analyzed. As a result of analyzing the purpose of the study, most of the simulators were developed to evaluate the hemodynamic properties of artificial hearts and valves. In addition, it was used for simulation evaluation or hemodynamic studies such as pulse wave studies. As a result of analyzing configurations of the simulators, a heart most often consisted of only one left ventricle. For blood vessels, the Windkessel model was most often constructed using chambers and valves. In most studies, blood was reproduced by mixing glycerin and water to reproduce both density and viscosity. In addition, as a result of analysis from the perspective of medical device performance evaluation, simulators for evaluating artificial heart and artificial valves have been studied a lot, whereas simulators for blood pressure, pulse wave, and blood flow devices have been relatively insignificant. Based on the review results, we suggested considerations when developing a simulator for performance evaluations of a pulse wave detector.

Design and Performance Analysis of the H/V-bus Parallel Computer (H/V-버스 병렬컴퓨터의 설계 및 성능 분석)

  • 김종현
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.1
    • /
    • pp.29-42
    • /
    • 1994
  • The architecture of a MIMD-type parallel computer system is specified: a simulator is developed to support design and evaluation of systems based on the architecture: and conducted with the simulator to evaluate system performance. The horizontal/vertical-bus(H/V-bus) system architecture provides an NxN array of processing elements which communicate with each other through a network of N horizontal buses and N vertical buses. The simulator, written in SLAM II and FORTRAN, is designed to provide high-resolution in simulating the IPC mechanism. Parameters provide the user with independent control of system size, PE speed and IPC mechanism speed. Results generated by the simulator include execution times, PE utilizations, queue lengths, and other data. The simulator is used to study system performance when a partial differential equation is solved by parallel Gauss-Seidel method. For comparisons, the benchmark is also executed on a single-bus system simulator that is derived from the H/V-bus system simulator. The benchmark is also solved on a single PE to obtain data for computing speedups. An extensive analysis of results is presented.

  • PDF

Implementation of DVB-T Simulator and Performance Evaluation in Rician Channels (DVB-T 시뮬레이터의 구현과 Rician 채널에서의 성능평가)

  • Seo, Man-Jung;Im, Sung-Bin;Kim, Na-Hoon;Cho, Jun-Kyung
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.231-232
    • /
    • 2006
  • In this paper, we developed a simulator for the DVB-T which can predict the performance of the system. In the simulator, the transmitter and receiver are implemented based on the European standard of the DVB-T. The BER performance is measured for various QAM levels and coding rates in Rician channels with several mobile speeds.

  • PDF

A Study of Strength of Damaged Ship Structures Using Damage Simulator (Damage simulator를 이용한 선박의 손상강도에 관한 연구)

  • Han, Dae-Suk;Cho, Dae-Seung;Kim, Jin-Hyung;Lee, Tak-Kee;Rim, Chae-Whan;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.439-444
    • /
    • 2007
  • A damage analysis simulator, which is applicable for evaluating the residual strength of damaged ship, was developed in this paper. For this process, CDM (Continuum Damage Mechanics) approach has been implemented to the simulator by virtue of the numerical technique for evaluation of crack initiation and/or enlargement. A damage calculation program has been linked with a commercial finite element analysis code (NASTRAN) and a ultimate strength evaluation program (LSAP) in order to assess residual strength of damaged ship. As a results of series calculation for the frigate model, giving the quantitative structural damage to the ultimate strength evaluation, a residual strength with damage is predicted to be at least 70 percentage lower than the case of intact condition. It was found that the proposed technique can be used as a design support tool in the field of simulation based ship design.

Development of a Real-Time Driving Simulator for Vehicle System Development and Human Factor Study (차량 시스템 개발 및 운전자 인자 연구를 위한 실시간 차량 시뮬레이터의 개발)

  • 이승준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.250-257
    • /
    • 1999
  • Driving simulators are used effectively for human factor study, vehicle system development and other purposes by enabling to reproduce actural driving conditions in a safe and tightly controlled enviornment. Interactive simulation requries appropriate sensory and stimulus cuing to the driver . Sensory and stimulus feedback can include visual , auditory, motion, and proprioceptive cues. A fixed-base driving simulator has been developed in this study for vehicle system developmnet and human factor study . The simulator consists of improved and synergistic subsystems (a real-time vehicle simulation system, a visual/audio system and a control force loading system) based on the motion -base simulator, KMU DS-Ⅰ developed for design and evaluation of a full-scale driving simulator and for driver-vehicle interaction.

  • PDF

VIRTUAL REALITY SHIP SIMULATOR

  • Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.06a
    • /
    • pp.93-105
    • /
    • 2000
  • This paper describes prototype Virtual Reality Ship Simulator (VRSS) that we have recently developed next-generation training equipment based on the virtual reality (VR) technology. The inherent defects of conventional ship simulators are enormous costs and difficult system upgrade due to the system construction, such as large mock-up bridge system, wide visual presentations, In this paper, to cope with those problems, we explored VR technology that can give realistic environments in a virtual world. Then we constructed prototype VRSS system, which is, consists of PC-based human sensors, and Databases set having 3D object models and coefficients of Head Related Transfer Functions (HRTFs). 3D-WEBMASTER authoring tool was used as Virtual Reality Modeling Language (VRML). Using the VRSS system, we constructed Port an Passage Simulator for the harbor of INCHON in Korea, and Ship and Sea State Simulator for an arbitrary given sea environmental states by user. Through many simulation tests, we testified the efficiency of developed prototype VRSS by subject assessment with five participants. Then, we present results on the simulation experiments and conclude with discussion of evaluation results.

  • PDF

Experimental Evaluation of Unmanned Aerial Vehicle System Software Based on the TMO Model

  • Park, Han-Sol;Kim, Doo-Hyun;Kim, Jung-Guk;Chang, Chun-Hyon
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.4
    • /
    • pp.357-374
    • /
    • 2008
  • Over the past few decades, a considerable number of studies have been conducted on the technologies to build an UAV (Unmanned Aerial Vehicle) control system. Today, focus in research has moved from a standalone control system towards a network-centric control system for multiple UAV systems. Enabling the design of such complex systems in easily understandable forms that are amenable to rigorous analysis is a highly desirable goal. In this paper, we discuss our experimental evaluation of the Time-triggered Message-triggered Object (TMO) structuring scheme in the design of the UAV control system. The TMO scheme enables high-level structuring together with design-time guaranteeing of accurate timings of various critical control actions with significantly smaller efforts than those required when using lower-level structuring schemes based on direct programming of threads, UDP invocations, etc. Our system was validated by use of environment simulator developed based on an open source flight simulator named FlightGear. The TMO-structured UAV control software running on a small computing platform was easily connected to a simulator of the surroundings of the control system, i.e., the rest of the UAV and the flight environment. Positive experiences in both the TMO-structured design and the validation are discussed along with potentials for future expansion in this paper.

Design of an I/O Simulaor for Performance Evaluation of Reactor Protection Systems (원자로 보호계통 성능시험용 입출력 모의 장치 설계)

  • Kim, Seog-Joo;Kim, Jong-Moon;Park, Min-Kook;Kim, Chun-Kyung;Kim, Chang-Hwoi
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.265-267
    • /
    • 2002
  • This paper deals with an I/O simulator design for performance evaluation of reactor protection systems in nuclear power plants. The I/O simulator provides input signals for the reactor protection system, and acquires output signals from the initiation circuits. The simulator is based on VMEbus system, and all VMEbus boards are developed within the country.

  • PDF

The Evaluation of Driver's Physiology Signal and Sensibility according to the Change of Speed and the Gap of Platoon on AHS (AHS에서 차량군의 속도와 거리 변화에 따른 운전자의 생체신호와 감성 평가)

  • Jeon, Yong-Uk;Park, Beom
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.15-28
    • /
    • 2003
  • The one of the most important factors is the platoon design on developing AH3(Advanced Highway System), as it is related to traffic efficiency and drivers' safety. This study was evaluated that how much speed is comfortable for drivers and how long distance is appropriate for vehicular gap of platoon by measuring drivers' physiology signal and sensibility. A fixed-based AHS simulator was developed by using a real vehicle cockpit and the restructured part of Korean highway for human factors evaluation. The EEG(electroencephalogram), ECG (electrocardiogram) and GSR(Galvanic Skin Response) were measured for obtaining drivers' physiology signal according to the change of speed and gap. The brain wave(${\alpha},\;{\beta},\;{\delta},\;{\theta}$) by EEG, the response of the autonomic nervous system. the sympathetic and parasympathetic nervous system, by ECG, and relax-arousal situation by GSR were analyzed. The SD(Semantic Differential) method was also applied to evaluate drivers' sensibility by 5-grade evaluation scale with 96 adjectives. SSQ(Simulator Sickness Questionnaire) was used to measure the simulator sickness of pre and post driving, two times. As the results, drivers were comfortable with 120km/h speed of platoon and lam to 15m vehicular distance. The results of this study may differ from the adaption of the reality because of many parameters. However, the purpose of this study is show to significant results of the drivers' safety and the acceptability of human factors evaluation.