• Title/Summary/Keyword: Simulator Experiment

Search Result 431, Processing Time 0.024 seconds

Evaluation of Car Interior Noise by Using EEG (뇌파를 이용한 적정 자동차 내부소음의 평가)

  • 김정룡;박창순
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.65
    • /
    • pp.65-73
    • /
    • 2001
  • In this study, psychophysiological stress was quantitatively evaluated at various car interior noise levels by using Electroencephalogram(EEG). An experiment was performed to investigate the most comfortable range of noise level during simulated driving condition. Twelve healthy volunteers participated in the experiment. They were asked to operate the driving simulator while six levels of interior noise were given, such as 45dB(A), 50dB(A), 55dB(A), 60dB(A), 70dB(A), 80dB(A), and maximal subjective noise level. EEG signals were recorded for 60 seconds in each noise level. The power spectral analysis was performed to analyze EEG signal. At the same time, psychological stress was also measured subjectively by using a magnitude estimation method. The results showed that subjective stress and EEG spectrum indicated a statistically significant difference between noise levels. In particular, high level noise produced an increase in beta power at temporal(T3, T4) areas. It was also found that beta activity was highly correlated with subjective perception of discomfort, and subjects responded to car interior noise as arousing or negative stimuli. Moreover, beta power remained stable above 70dB(A), whereas subjective discomfort continued to increase even above 70dB(A) We concluded that brain waves could provide psychophysiological information of drivers emotional reaction to car interior noise. Thus, EEG parameters could be a new measure to determine optimal noise level in ergonomic workplace design after further verification in various experimental conditions.

  • PDF

Use of gaze entropy to evaluate situation awareness in emergency accident situations of nuclear power plant

  • Lee, Yejin;Jung, Kwang-Tae;Lee, Hyun-Chul
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1261-1270
    • /
    • 2022
  • This study was conducted to investigate the possibility of using gaze entropy to evaluate an operator's situation awareness in an emergency accident situation of a nuclear power plant. Gaze entropy can be an effective measure for evaluating an operator's situation awareness at a nuclear power plant because it can express gaze movement as a single comprehensive number. In order to determine the relationship between situation awareness and gaze entropy for an emergency accident situation of a nuclear power plant, an experiment was conducted to measure situation awareness and gaze entropy using simulators created for emergency accident situations LOCA, SGTR, SLB, and LOV. The experiment was to judge the accident situation of nuclear power plants presented in the simulator. The results showed that situation awareness and Shannon, dwell time, and Markov entropy had a significant negative correlation, while visual attention entropy (VAE) did not show any significant correlation with situation awareness. The results determined that Shannon entropy, dwell time entropy, and Markov entropy could be used as measures to evaluate situation awareness.

Effect of Rock Mass Properties on Coupled Thermo-Hydro-Mechanical Responses at Near-Field Rock Mass in a Heater Test - A Benchmark Sensitivity Study of the Kamaishi Mine Experiment in Japan

  • Hwajung Yoo;Jeonghwan Yoon;Ki-Bok Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.23-41
    • /
    • 2023
  • Coupled thermo-hydraulic-mechanical (THM) processes are essential for the long-term performance of deep geological disposal of high-level radioactive waste. In this study, a numerical sensitivity analysis was performed to analyze the effect of rock properties on THM responses after the execution of the heater test at the Kamaishi mine in Japan. The TOUGH-FLAC simulator was applied for the numerical simulation assuming a continuum model for coupled THM analysis. The rock properties included in the sensitivity study were the Young's modulus, permeability, thermal conductivity, and thermal expansion coefficients of crystalline rock, rock salt, and clay. The responses, i.e., temperature, water content, displacement, and stress, were measured at monitoring points in the buffer and near-field rock mass during the simulations. The thermal conductivity had an overarching impact on THM responses. The influence of Young's modulus was evident in the mechanical behavior, whereas that of permeability was noticed through the change in the temperature and water content. The difference in the THM responses of the three rock type models implies the importance of the appropriate characterization of rock mass properties with regard to the performance assessment of the deep geological disposal of high-level radioactive waste.

Design of a new 4-DOF soft finger mechanism (4자유도 새로운 소프트 핑거 설계)

  • Cha, Hyo-Jung;Yi, Byung-Ju
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.315-322
    • /
    • 2008
  • A new soft finger mechanism using a spring as a backbone is proposed in this work. It is a 4 DOF mechanism that consists of a spring and 3 cylinders, which behave like joints with 3 up-and-down rotations and 1 left-and-right rotation. To control each joint, cylinders have small holes in their cross-sectional areas, and wires of different length are penetrated into these holes. We can control each joint by pulling the corresponding wire. The forward kinematics is solved by using the geometry of mechanism. And the relationship (Jacobian) between the linear velocity of the wires and the joint angular rate is obtained. A virtual simulator is developed to test the validity of the kinematic model. In the experiment, first, the position control is conducted by tracking a given trajectory. Second, to verify the flexibility and safety, we show that the soft finger deflects in a safe manner, in spite of the collision with environment.

  • PDF

A Supercapacitor Remaining Energy Control Method for Smoothing a Fluctuating Renewable Energy Power

  • Lee, Wujong;Cha, Hanju
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.146-154
    • /
    • 2015
  • This paper proposes a control method for maintaining the energy level for a supercapacitor energy storage system coupled with a wind generator to stabilize wind power output. Although wind power is green and clean energy source, disadvantage of the renewable energy output power is fluctuation. In order to mitigate the fluctuating output power, supercapacitor energy storage system (SCESS) and wind power simulator is developed. A remaining energy supercapacitor (RESC) control is introduced and analyzed to smooth for short-term fluctuating power and maintain the supercapacitor voltage within the designed operating range in the steady as well as transient state. When the average and fluctuating component of power increases instantaneously, the RESC compensates fluctuating power and the variation of fluctuating power is reduced 100% to 30% at 5kW power. Furthermore, supercapacitor voltage is maintained within the operating voltage range and near 50% of total energy. Feasibility of SCESS with RESC control is verified through simulation and experiment.

An analysis of the thermal characteristics for optimal design and operation of the radiant heating panels (복사난방패널의 설계 및 운전을 위한 열적 특성 분석)

  • Lee, T.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.180-188
    • /
    • 1997
  • The theoretical analysis and experiment with simulator were performed to obtain the temperature distributions in radiant heating panel and heat supply from hot water to heating space for the purpose of the development of comfortable living space from a point of view of the improvement of air quality and the enhancement of system efficiency. The relations of various parameters, such as pipe pitch, room temperature as well as flow rate and temperature of hot water and so on, with the rate of heat supplied, mean temperature and maximum temperature difference at panel surface were discussed. The effects of these parameters were also verified on the thermal performance of heating panel using the relations which could be used for the optimal design and operation of the radiant heating panel.

  • PDF

Small-scaled Experiment of Ship Power System with Real-time Simulator (실시간 시뮬레이터를 이용한 선박 전력 시스템의 축소 모델 실험)

  • Ko, Sanggi;Kim, So-Yeon;Choe, Sehwa;Sul, Seung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.204-205
    • /
    • 2013
  • 선박 전력 시스템 설계에 관한 연구의 경우 실제 선박에서의 실험의 어려움 때문에 디지털 시뮬레이션에 의존해 연구를 진행해 왔다. 본 논문에서는 선박 전력 시스템의 보다 정밀한 실험 및 제어 알고리즘 검증을 위해 축소 모델과 실시간 시뮬레이터를 동시에 이용하는 새로운 실험 방법을 제안하였다. 실제 크기의 선박 전력 시스템은 직접 제작하기 어렵기 때문에 축소 모델을 이용하였고 복잡한 선박 전력 시스템의 일부를 실시간 시뮬레이터로 모의함으로써 실제 실험 세트의 구성을 간소화 할 수 있었다. 축소 모델 실험을 통해 선박 전력 시스템의 과도 상태 및 정상 상태 해석을 수행하였으며 이러한 시스템에서 얻은 결과는 추후 실선 제작을 위한 설계 자료로 활용될 수 있다.

  • PDF

A Study on the Real Time Analysis of Plastic Deformation Process using WWW(World Wide Web) (웹을 이용한 실시간 소성가공의 해석에 관한 연구)

  • 이상돈;최호준;방세윤;임중연;이호용
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.110-115
    • /
    • 2003
  • This paper is concerned with the compression test and forming process of flange by using virtual reality and analysis(simulation) program. This virtual manufacturing can be carried out one personal computer without any expensive devices for experiment. The virtual manufacturing composed of three modules such as the imput, calculation and the output modules on internet. Internet user can give the material's property and process parameters to the sever computer at the input module. On the calculation module, a simulator computes the virtual manufacturing process by analysis program and stores the data as a file. The output module is the program in which internet user can confirm virtual manufacturing results by showing tables, graphs, and 3D animation. This programs is designed by an internet language such as HTML, CGI, VRML and JAVA ,while analysis programs use the finite increasing, the virtual manufacturing technique will substitute many real experiments in the future.

Wind Turbine Simulator Implementation Considering Tower Effect of Rotor Blade (풍력발전기 회전자 블레이드의 타워효과를 고려한 풍차 시뮬레이터의 구현)

  • Oh, Jeong-Hun;Jeong, Byoung-Chang;Song, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.247-250
    • /
    • 2003
  • To get more realistic wind turbine torque characteristic, it is important to consider many parameters about wind turbine system. One of them is the tower effect which is occurred when a blade is bypassing the wind turbine tower and influences shaft torque fluctuation. In this paper, to emulate the similar torque performance of wind turbine, the wind turbine simulation and experiment with torque fluctuation by blade tower effect are implemented and verified. The simulation model is based on MATLAB Simulink.

  • PDF

Use of Ultrasonic to Atomizing a Highly Viscous Bio-oil (고점성 바이오유의 분무미립화를 위한 초음파 이용)

  • 주은선;나우정;김종천
    • Journal of Biosystems Engineering
    • /
    • v.21 no.4
    • /
    • pp.467-473
    • /
    • 1996
  • Ultrasonic energy was applied for atomizing rice-bran oil which is a highly viscous bio fuel. Six different nozzles, an injection simulator, and an ultrasonic generator system were designed and constructed for the experiment. An immersion liquid method was used for the measurement of injection droplet sizes. The characteristics of injection droplets was investigated with respect to the numbers of the droplets with diameters ranging from 5$\mu$m 50$\mu$m and to the Sauter mean diameter. The results showed that the ultrasonic energy was effective for the improvement of the atomization of the injection droplets for all the factors such as type of nozzles, nozzle opening pressures, and collection distances.

  • PDF