• Title/Summary/Keyword: Simulations

Search Result 15,976, Processing Time 0.045 seconds

Dose Assessment of Orbital Adnexa in Electron Beam Therapy for Orbital Lymphoma (안와림프종의 전자선 치료 시 안구 부속기관에 대한 선량평가)

  • Dong Hwan Kim;Yong In Cho
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.283-292
    • /
    • 2024
  • Radiation side effects and complications on the ocular adnexa during electron beam therapy for orbital lymphoma can increase the incidence of posterior subcapsular cataracts. This study simulated a medical linear accelerator and a mathematical model of the eye using monte carlo simulations to evaluate the dose to the ocular adnexa and compare the shielding effectiveness on different parts of the ocular adnexa based on lens shield thickness. The dose assessment results of the ocular adnexa showed that the lens's sensitive area had the highest absorbed dose distribution when no shield was used, followed by the lens's non-sensitive area, the anterior chamber, vitreous humor, cornea, and eyelid in descending order. With the use of a shield, a 2 mm thick shield demonstrated a dose reduction effect of over 90% in the lens's sensitive area, over 83% in the non-sensitive area and anterior chamber, and a dose reduction effect of 30 to 62% in the vitreous body, cornea, and eyelid. For dose reduction in the lens's sensitive area during electron beam therapy for orbital lymphoma, it is necessary to use a shield of at least 2 mm thickness. Additionally, shielding strategies considering the thickness and area of the shield for other ocular adnexa besides the lens are required.

Experimental and numerical study on the structural behavior of Multi-Cell Beams reinforced with metallic and non-metallic materials

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ahmed K. Fadel;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.611-633
    • /
    • 2024
  • This study intends to investigate the response of multi-cell (MC) beams to flexural loads in which the primary reinforcement is composed of both metallic and non-metallic materials. "Multi-cell" describes beam sections with multiple longitudinal voids separated by thin webs. Seven reinforced concrete MC beams measuring 300×200×1800 mm were tested under flexural loadings until failure. Two series of beams are formed, depending on the type of main reinforcement that is being used. A control RC beam with no openings and six MC beams are found in these two series. Series one and two are reinforced with metallic and non-metallic main reinforcement, respectively, in order to maintain a constant reinforcement ratio. The first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were among the structural parameters of the beams under investigation that were documented. The primary variables that vary are the kind of reinforcing materials that are utilized, as well as the kind and quantity of mesh layers. The outcomes of this study that looked at the experimental and numerical performance of ferrocement reinforced concrete MC beams are presented in this article. Nonlinear finite element analysis (NLFEA) was performed with ANSYS-16.0 software to demonstrate the behavior of composite MC beams with holes. A parametric study is also carried out to investigate the factors, such as opening size, that can most strongly affect the mechanical behavior of the suggested model. The experimental and numerical results obtained demonstrate that the FE simulations generated an acceptable degree of experimental value estimation. It's also important to demonstrate that, when compared to the control beam, the MC beam reinforced with geogrid mesh (MCGB) decreases its strength capacity by a maximum of 73.33%. In contrast, the minimum strength reduction value of 16.71% is observed in the MC beams reinforced with carbon reinforcing bars (MCCR). The findings of the experiments on MC beams with openings demonstrate that the presence of openings has a significant impact on the behavior of the beams, as there is a decrease in both the ultimate load and maximum deflection.

Licochalcone C Inhibits the Growth of Human Colorectal Cancer HCT116 Cells Resistant to Oxaliplatin

  • Seung-On Lee;Sang Hoon Joo;Jin-Young Lee;Ah-Won Kwak;Ki-Taek Kim;Seung-Sik Cho;Goo Yoon;Yung Hyun Choi;Jin Woo Park;Jung-Hyun Shim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.104-114
    • /
    • 2024
  • Licochalcone C (LCC; PubChem CID:9840805), a chalcone compound originating from the root of Glycyrrhiza inflata, has shown anticancer activity against skin cancer, esophageal squamous cell carcinoma, and oral squamous cell carcinoma. However, the therapeutic potential of LCC in treating colorectal cancer (CRC) and its underlying molecular mechanisms remain unclear. Chemotherapy for CRC is challenging because of the development of drug resistance. In this study, we examined the antiproliferative activity of LCC in human colorectal carcinoma HCT116 cells, oxaliplatin (Ox) sensitive and Ox-resistant HCT116 cells (HCT116-OxR). LCC significantly and selectively inhibited the growth of HCT116 and HCT116-OxR cells. An in vitro kinase assay showed that LCC inhibited the kinase activities of EGFR and AKT. Molecular docking simulations using AutoDock Vina indicated that LCC could be in ATP-binding pockets. Decreased phosphorylation of EGFR and AKT was observed in the LCC-treated cells. In addition, LCC induced cell cycle arrest by modulating the expression of cell cycle regulators p21, p27, cyclin B1, and cdc2. LCC treatment induced ROS generation in CRC cells, and the ROS induction was accompanied by the phosphorylation of JNK and p38 kinases. Moreover, LCC dysregulated mitochondrial membrane potential (MMP), and the disruption of MMP resulted in the release of cytochrome c into the cytoplasm and activation of caspases to execute apoptosis. Overall, LCC showed anticancer activity against both Ox-sensitive and Ox-resistant CRC cells by targeting EGFR and AKT, inducing ROS generation and disrupting MMP. Thus, LCC may be potential therapeutic agents for the treatment of Ox-resistant CRC cells.

Numerical simulations on electrical resistivity survey to predict mixed ground ahead of a TBM tunnel (TBM 터널 전방 복합지반 예측을 위한 전기 비저항 탐사의 수치해석적 연구)

  • Seunghun Yang;Hangseok Choi;Kibeom Kwon;Chaemin Hwang;Minkyu Kang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.403-421
    • /
    • 2023
  • As the number of underground structures has increased in recent decades, it has become crucial to predict geological hazards ahead of a tunnel face during tunnel construction. Consequently, this study developed a finite element (FE) numerical model to simulate electrical resistivity surveys in tunnel boring machine (TBM) operations for predicting mixed ground conditions in front of tunnel faces. The accuracy of the developed model was verified by comparing the numerical results not only with an analytical solution but also with experimental results. Using the developed model, a series of parametric studies were carried out to estimate the effect of geological conditions and sensor geometric configurations on electrical resistivity measurements. The results of these studies showed that both the interface slope and the difference in electrical resistivity between two different ground formations affect the patterns and variations in electrical resistivity observed during TBM excavation. Furthermore, it was revealed that selecting appropriate sensor spacing and optimizing the location of the electrode array were essential for enhancing the efficiency and accuracy of predictions related to mixed ground conditions. In conclusion, the developed model can serve as a powerful and reliable tool for predicting mixed ground conditions during TBM tunneling.

A Study on the Smoke Removal Equipment in Plant Facilities Using Simulation (시뮬레이션을 이용한 플랜트 시설물 제연설비에 관한 연구)

  • Doo Chan Choi;Min Hyeok Yang;MIn Hyeok Ko;Su Min Oh
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.40-46
    • /
    • 2024
  • Purpose: In this study, in order to ensure the evacuation safety of plant facilities, we analyze the relationship between the height of smoke removal boundary walls, the presence or absence of smoke removal equipment, and evacuation safety. Method: Using fire and evacuation simulations, evacuation safety was analyzed through changes in the height of the smoke removal boundary wall, air supply volume and exhaust volume according to vertical dista. Result: In the case of visible drawings, if only 0.6m of boundary wall is used, the time below 5m reaches the shortest, and 1.2m of boundary width is 20% longer than when using smoke removal facilities. In the case of temperature, 1.2m is 20% longer than 0.6m when only the boundary width is used without smoke removal facilities. Conclusion: It was found that increasing the length of the smoke removal boundary wall could affect visibility, and installing a smoke removal facility would affect temperature. Therefore, it is determined that an appropriate smoke removal plan and smoke removal equipment should be installed in consideration of the process characteristics.

A Study on the Evaluation the Safety of Evacuation in Indoor Sports Stadium through Evacuation Simulation (피난시뮬레이션을 통한 실내 스포츠경기장 내 장애인의 피난 안전성 평가 연구)

  • MinEon Ju;SeHong Min
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.69-81
    • /
    • 2024
  • Purpose: Recently, there has been a movement to guarantee the right to watch sports for the disabled. However, the sports stadium is designed without considering the wheelchair users, so the right to move in the stadium is not secured. Restrictions on the movement of the disabled make the evacuation vulnerable in an emergency. This study aims to develop a plan to ensure the safety of movement and evacuation of wheelchair users by conducting simulations targeting indoor sports stadiums. Method: The simulation was performed by constructing a scenario with the shape of the stands as a variable. The effect of the installation of wheelchair seats on evacuation was confirmed. Result: The results according to whether wheelchair seats are installed, the evacuation route of wheelchair movement, and whether wheelchair seats are separately arranged were compared. The impact of wheelchair seat installation on evacuation and its characteristics were derived. As a result, upward and separation seat was the most vulnerable to evacuation. Conclusion: A plan to secure evacuation performance was derived for the top floors of upward and separation seat. It is judged that the content can be use as a way to secure the safety of movement and evacuation of the disabled in sports stadiums.

The Contact and Parallel Analysis of SPH Using Cartesian Coordinate Based Domain Decomposition Method (Cartesian 좌표기반 동적영역분할을 고려한 SPH의 충돌 및 병렬해석)

  • Moonho Tak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.13-20
    • /
    • 2024
  • In this paper, a parallel analysis algorithm for Smoothed Particle Hydrodynamics (SPH), one of the numerical methods for fluidic materials, is introduced. SPH, which is a meshless method, can represent the behavior of a continuum using a particle-based approach, but it demands substantial computational resources. Therefore, parallel analysis algorithms are essential for SPH simulations. The domain decomposition algorithm, which divides the computational domain into partitions to be independently analyzed, is the most representative method among parallel analysis algorithms. In Discrete Element Method (DEM) and Molecular Dynamics (MD), the Cartesian coordinate-based domain decomposition method is popularly used because it offers advantages in quickly and conveniently accessing particle positions. However, in SPH, it is important to share particle information among partitioned domains because SPH particles are defined based on information from nearby particles within the smoothing length. Additionally, maintaining CPU load balance is crucial. In this study, a highly parallel efficient algorithm is proposed to dynamically minimize the size of orthogonal domain partitions to prevent excess CPU utilization. The efficiency of the proposed method was validated through numerical analysis models. The parallel efficiency of the proposed method is evaluated for up to 30 CPUs for fluidic models, achieving 90% parallel efficiency for up to 28 physical cores.

Analysis of Tsunami Characteristics of Korea Southern Coast Using a Hypothetical Scenario (가상시나리오에 따른 남해안 지진해일 특성 연구)

  • Bumshick Shin;Dong-Seog Kim;Dong-Hwan Kim;Sang-Yeop Lee;Si-Bum Jo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.80-86
    • /
    • 2024
  • Large-scale earthquakes are occurring globally, especially in the South Asian crust, which is experiencing a state of tension in the aftermath of the 2011 East Japan Earthquake. Uncertainty and fear regarding the possibility of further seismic activity in the near future have been on the rise in the region. The National Disaster Management Research Institute has previously studied and analyzed the overflow characteristics of a tsunami and the rate of flood forecasting through tsunami numerical simulations of the East Sea of South Korea. However, there is currently a significant lack of research on the Southern Coast tsunamis compared to the East Coast. On the Southern Coast, the tidal difference is between 1~4 m, and the impact of the tides is hard to ignore. Therefore, it is necessary to analyze the impact of the tide propagation characteristics on the tsunami. Occurrence regions that may cradle tsunamis that affect the southern coast region are the Ryukyu Island and Nankai Trough, which are active seafloor fault zones. The Southern Coast has not experienced direct damage from tsunamis before, but since the possibility is always present, further research is required to prepare precautionary measures in the face of a potential event. Therefore, this study numerically simulated a hypothetical tsunami scenario that could impact the southern coast of South Korea. In addition, the tidal wave propagation characteristics that emerge at the shore due to tide and tsunami interactions will be analyzed. This study will be used to prepare for tsunamis that might occur on the southern coast through tsunami hazard and risk analysis.

A method for localization of multiple drones using the acoustic characteristic of the quadcopter (쿼드콥터의 음향 특성을 활용한 다수의 드론 위치 추정법)

  • In-Jee Jung;Wan-Ho Cho;Jeong-Guon Ih
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.351-360
    • /
    • 2024
  • With the increasing use of drone technology, the Unmanned Aerial Vehicle (UAV) is now being utilized in various fields. However, this increased use of drones has resulted in various issues. Due to its small size, the drone is difficult to detect with radar or optical equipment, so acoustical tracking methods have been recently applied. In this paper, a method of localization of multiple drones using the acoustic characteristics of the quadcopter drone is suggested. Because the acoustic characteristics induced by each rotor are differentiated depending on the type of drone and its movement state, the sound source of the drone can be reconstructed by spatially clustering the results of the estimated positions of the blade passing frequency and its harmonic sound source. The reconstructed sound sources are utilized to finally determine the location of multiple-drone sound sources by applying the source localization algorithm. An experiment is conducted to analyze the acoustic characteristics of the test quadcopter drones, and the simulations for three different types of drones are conducted to localize the multiple drones based on the measured acoustic signals. The test result shows that the location of multiple drones can be estimated by utilizing the acoustic characteristics of the drone. Also, one can see that the clarity of the separated drone sound source and the source localization algorithm affect the accuracy of the localization for multiple-drone sound sources.

Research on Evaluation of Properties of PA6/PA66/GF Composite according to Injection Pressure and Simulation of Damping Performance (엔진마운트 브라켓용 PA66/GF 복합재료의 특성 평가 및 진동감쇠 성능 시뮬레이션에 대한 연구)

  • Seong-Hun Yu;Hyun-Sung Yun;Dong-Hyun Yeo;Jun-Hee Lee;Jong-Su Park;Jee-hyun Sim
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.59-67
    • /
    • 2024
  • Research was conducted on a PA material-based composite material manufacturing method for application to engine mount brackets. Engine mount brackets must have heat resistance, impact resistance, and damping performance. PA66 resin was used as the base material for the composite material. The glass fiber was used as the reinforcement material. The composite material was manufactured using the injection molding method. The thermal, mechanical, and morphological characteristics were analyzed depending on the content of glass fiber. 3D model was created using the property evaluation database of composite materials(input data). The damping performance of the generated 3D model was extracted as out-put data. The reason for evaluating the characteristics of PA-based composite materials and conducting simulations on the damping performance of 3D models of engine brackets is because product performance can be predicted without manufacturing actual automobile parts and conducting damping performance tests. As a result of the damping simulation, damping performance tended to increase proportionally as the mass fraction of the reinforcement increased. But above a certain level, it no longer increased and slightly decreased. As a result of comparing the actual experimental values a nd the simulated values, the approximate value was within ±5%.