• 제목/요약/키워드: Simulation Nuclear Fuel

검색결과 308건 처리시간 0.028초

DESIGN OPTIMIZATION OF RADIATION SHIELDING STRUCTURE FOR LEAD SLOWING-DOWN SPECTROMETER SYSTEM

  • KIM, JEONG DONG;AHN, SANGJOON;LEE, YONG DEOK;PARK, CHANG JE
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.380-387
    • /
    • 2015
  • A lead slowing-down spectrometer (LSDS) system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as $^{235}U$, $^{239}Pu$, $^{241}Pu$, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea) is planned to utilize a high-flux ($>10^{12}n/cm^2{\cdot}s$) neutron source comprised of a high-energy (30 MeV)/high-current (~2 A) electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (< $0.06{\mu}Sv/h$), a few shielding materials [high-density polyethylene (HDPE)eBorax, $B_4C$, and $Li_2CO_3$] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in the near future.

A Study on Estimation of Radiation Exposure Dose During Dismantling of RCS Piping in Decommissioning Nuclear Power Plant

  • Lee, Taewoong;Jo, Seongmin;Park, Sunkyu;Kim, Nakjeom;Kim, Kichul;Park, Seongjun;Yoon, Changyeon
    • 방사성폐기물학회지
    • /
    • 제19권2호
    • /
    • pp.243-253
    • /
    • 2021
  • In the dismantling process of a reactor coolant system (RCS) piping, a radiation protection plan should be established to minimize the radiation exposure doses of dismantling workers. Hence, it is necessary to estimate the individual effective dose in the RCS piping dismantling process when decommissioning a nuclear power plant. In this study, the radiation exposure doses of the dismantling workers at different positions was estimated using the MicroShield dose assessment program based on the NUREG/CR-1595 report. The individual effective dose, which is the sum of the effective dose to each tissue considering the working time, was used to estimate the radiation exposure dose. The estimations of the simulation results for all RCS piping dismantling tasks satisfied the dose limits prescribed by the ICRP-60 report. In dismantling the RCS piping of the Kori-1 or Wolsong-1 units in South Korea, the estimation and reduction method for the radiation exposure dose, and the simulated results of this study can be used to implement the radiation safety for optimal dismantling by providing information on the radiation exposure doses of the dismantling workers.

MPS eutectic reaction model development for severe accident phenomenon simulation

  • Zhu, Yingzi;Xiong, Jinbiao;Yang, Yanhua
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.833-841
    • /
    • 2021
  • During the postulated severe accident of nuclear reactor, eutectic reaction leads to low-temperature melting of fuel cladding and early failure of core structure. In order to model eutectic melting with the moving particle semi-implicit (MPS) method, the eutectic reaction model is developed to simulate the eutectic reaction phenomenon. The coupling of mass diffusion and phase diagram is applied to calculate the eutectic reaction with the uniform temperature. A heat transfer formula is proposed based on the phase diagram to handle the heat release or absorption during the process of eutectic reaction, and it can combine with mass diffusion and phase diagram to describe the eutectic reaction with temperature variation. The heat transfer formula is verified by the one-dimensional melting simulations and the predicted interface position agrees well with the theoretical solution. In order to verify the eutectic reaction models, the eutectic reaction of uranium and iron in two semi-infinite domains is simulated, and the profile of solid thickness decrease over time follows the parabolic law. The modified MPS method is applied to calculate Transient Reactor Test Facility (TREAT) experiment, the penetration rate in the simulations are agreeable with the experiment results. In addition, a hypothetical case based on the TREAT experiment is also conducted to validate the eutectic reaction with temperature variation, the results present continuity with the simulations of TREAT experiment. Thus the improved method is proved to be capable of simulating the eutectic reaction in the severe accident.

Fissile Measurement in Various Types Using Nuclear Resonances

  • YongDeok Lee;Seong-Kyu Ahn
    • 방사성폐기물학회지
    • /
    • 제21권2호
    • /
    • pp.235-246
    • /
    • 2023
  • Neutron resonance transmission technique was applied for assaying isotopic fissile materials produced in the pyro-process. In each process of the pyro-process, a different composition of the fissile material is produced. Simulation was basically performed on 235U and 239Pu assay for TRU-RE product, hull waste, and uranium addition. The resonance energies were evaluated for uranium and plutonium in the simulation, and the linearity in the detection response was examined on the fissile content variation. The linear resonance energies were determined for the analysis of 235U and 239Pu on the different fissile materials. For enriched TRU-RE assay, the sample condition was suggested; The sample density, content, and thickness are the key factors to obtain accurate fissile content. The detection signal is discriminated for uranium and plutonium in neutron resonance technique. The transmitted signal for fissile resonance has a direct relation with the content of fissile. The simulation results indicated that the neutron resonance technique is promising to analyze 235U and 239Pu for various types of the pyro-process material. An accurate fissile assay will contribute toward safeguarding the pyro-processing system.

THREE-DIMENSIONAL FLOW PHENOMENA IN A WIRE-WRAPPED 37-PIN FUEL BUNDLE FOR SFR

  • JEONG, JAE-HO;YOO, JIN;LEE, KWI-LIM;HA, KWI-SEOK
    • Nuclear Engineering and Technology
    • /
    • 제47권5호
    • /
    • pp.523-533
    • /
    • 2015
  • Three-dimensional flow phenomena in a wire-wrapped 37-pin fuel assembly mock-up of a Japanese loop-type sodium-cooled fast reactor, Monju, were investigated with a numerical analysis using a general-purpose commercial computational fluid dynamics code, CFX. Complicated and vortical flow phenomena in the wire-wrapped 37-pin fuel assembly were captured by a Reynolds-averaged Navier-Stokes flow simulation using a shear stress transport turbulence model. The main purpose of the current study is to understand the three-dimensional complex flow phenomena in a wire-wrapped fuel assembly to support the license issue for the core design. Computational fluid dynamics results show good agreement with friction factor correlation models. The secondary flow in the corner and edge subchannels is much stronger than that in an interior subchannel. The axial velocity averaged in the corner and edge subchannels is higher than that averaged in the interior subchannels. Three-dimensional multiscale vortex structures start to be formed by an interaction between secondary flows around each wire-wrapped pin. Behavior of the large-scale vortex structures in the corner and edge subchannels is closely related to the relative position between the hexagonal duct wall and the helically wrapped wire spacer. The small-scale vortex is axially developed in the interior subchannels. Furthermore, a driving force on each wire spacer surface is closely related to the relative position between the hexagonal duct wall and the wire spacer.

Numerical simulation of three-dimensional flow and heat transfer characteristics of liquid lead-bismuth

  • He, Shaopeng;Wang, Mingjun;Zhang, Jing;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1834-1845
    • /
    • 2021
  • Liquid lead-bismuth cooled fast reactor is one of the most promising reactor types among the fourth-generation nuclear energy systems. The flow and heat transfer characteristics of lead-bismuth eutectic (LBE) are completely different from ordinary fluids due to its special thermal properties, causing that the traditional Reynolds analogy is no longer recommended and appropriate. More accurate turbulence flow and heat transfer model for the liquid metal lead-bismuth should be developed and applied in CFD simulation. In this paper, a specific CFD solver for simulating the flow and heat transfer of liquid lead-bismuth based on the k - 𝜀 - k𝜃 - 𝜀𝜃 model was developed based on the open source platform OpenFOAM. Then the advantage of proposed model was demonstrated and validated against a set of experimental data. Finally, the simulation of LBE turbulent flow and heat transfer in a 7-pin wire-wrapped rod bundle with the k - 𝜀 - k𝜃 - 𝜀𝜃 model was carried out. The influence of wire on the flow and heat transfer characteristics and the three-dimensional distribution of key thermal hydraulic parameters such as temperature, cross-flow velocity and Nusselt number were studied and presented. Compared with the traditional SED model with a constant Prt = 1.5 or 2.0, the k - 𝜀 - k𝜃 - 𝜀𝜃 model is more accurate on predicting the turbulence flow and heat transfer of liquid lead-bismuth. The average relative error of the k - 𝜀 - k𝜃 - 𝜀𝜃 model is reduced by 11.1% at most under the simulation conditions in this paper. This work is meaningful for the thermal hydraulic analysis and structure design of fuel assembly in the liquid lead-bismuth cooled fast reactor.

Performance evaluation of the Floating Absorber for Safety at Transient (FAST) in the innovative Sodium-cooled Fast Reactor (iSFR) under a single control rod withdrawal accident

  • Lee, Seongmin;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1110-1119
    • /
    • 2020
  • The Floating Absorber for Safety at Transient (FAST) is a safety device used in the innovative Sodium-cooled Fast Reactor (iSFR). The FAST insert negative reactivity under transient or accident conditions. However, behavior of the FAST is still unclear under transient conditions. Therefore, the existing Floating Absorber for Safety at Transient Analysis Code (FASTAC) is improved to analyze the FAST movement by considering the reactivity and temperature distribution within the reactor core. The current FAST system is simulated under a single control rod withdrawal accident condition. In this investigation, the reactor thermal power does not return to its initial thermal power even if the FAST inserts negative reactivity. Only a 9 K of coolant temperature margin, in the hottest fuel assembly at EOL, can lead to unnecessary insertion of the negative reactivity. On the other hand, the FASTs cannot contribute to controlling the reactivity when normalized radial power is less than 0.889 at BOL and 0.972 at EOL. These simulation results suggest that the current FAST design needs to be optimized depending on its installed location. Meanwhile, the FAST system keeps the fuel, cladding and coolant temperatures below their limit temperatures with given conditions.

Modifications and Assessment of RELAP5/MOD3.2 for HANARO Thermal-Hydraulic Safety Analyses

  • Gee Yang Han;Kwi Seok Ha
    • Nuclear Engineering and Technology
    • /
    • 제34권5호
    • /
    • pp.455-467
    • /
    • 2002
  • RELAP5/MOD3.2 was modified to perform the thermal-hydraulic safety analysis for HANARO transients. Several aspects of RELAP5/MOD3.2 were modified or replaced by new features to properly simulate the unique HANARO characteristics such as the finned fuel element, the cooling mechanisms by both plate type heat exchanger and the natural circulation. Especially, the heat transfer packages were modified to be more appropriate for the safety analysis and the heat transfer models were developed for the plate type heat exchanger as well as natural circulation through the pool water. This modified version of RELAP5/MOD3.2 is renamed as RELAP5/HANARO. The thermal-hydraulic simulations of the single fuel pin test and plate type heat exchanger were peformed to assess the realistic predicting capabilities of RELAP5/HANARO and compared with experimental results and manufacturer's data in this paper. In addition, the natural circulation experiment using the scaled bundle was simulated to validate the capability of RELAP5/HANARO. The simulation results show almost similar trend with experimental data. Therefore, it is proved that RELAP5/HANARO has a confidence to use for the safety analyses of HANARO.

FLHT-2 실험결과를 이용한 SCDAP코드 평가 (Assessment of SCDAP Using the Full-Length High-Temperature FLHT-2 Test)

  • Park, Choon-Kyung;Park, Jong-Hwa;Yoo, Kun-Jung;Chae, Sung-Ki
    • Nuclear Engineering and Technology
    • /
    • 제20권1호
    • /
    • pp.54-64
    • /
    • 1988
  • FLHT-2 실험 결과를 사용하여 원자력발전소의 중대사고발생시 노심의 거동을 해석하기 위한 전산코드인 SCDAP코드를 평가하였다. 계산결과에 의하면 코드는 실험시 측정된 노심의 온도경향, 총수소발생량 및 순간최대수소발생율, 그리고 연료봉내압과 피복재파열시간을 잘 예측하는 것으로 평가되었다. 그러나 이상유체높이와 복사열전달 및 zircaloy의 급격한 산화 시작 온도에 대한 모델은 수정되어야 할 것으로 평가되었다. 또한 핵 연료봉에서의 gap을 고려하여주는 것은 노심손상현상의 정확한 예측에 커다란 도움을 줄 수 있다는 것이 밝혀졌다.

  • PDF

Nonlinear Dynamic Buckling Behavior of a Partial Spacer Grid Assembly

  • Yoon, Kyung-Ho;Kang, Heung-Seok;Kim, Hyung-Kyu;Song, Kee-Nam;Jung, Yeon-Ho
    • Nuclear Engineering and Technology
    • /
    • 제33권1호
    • /
    • pp.93-101
    • /
    • 2001
  • The spacer grid is one of the main structural components in the fuel assembly, which supports the fuel rods, guides cooling water, and protects the system from an external impact load, such as earthquakes. Therefore, the mechanical and structural properties of the spacer grids must be extensively examined while designing them. In this paper, a numerical method for predicting the buckling strength of spacer grids is presented. Numerical analyses on the buckling behavior of the spacer grids are performed for a various array of sizes of the grids considering that the spacer grid is an assembled structure with thin-walled plates and imposing proper boundary conditions by nonlinear dynamic finite element method using ABAQUS/Explicit. Buckling tests on several numbers of specimens of the spacer grid were also carried out in order to compare the results between the test and the simulation result. The drop test is accomplished by dropping a carriage on the specimen at a pre-determined position. From this test, the specimens are buckled only at the uppermost and the lowermost layer among the multi-cells, which is similar to the local buckling at the weakest point of the grid structure. The simulated results also similarly predicted the local buckling phenomena and were found to give good correspondence with the experimental values for the thin-walled grid structures.

  • PDF