• Title/Summary/Keyword: Simulation Models

Search Result 5,288, Processing Time 0.03 seconds

Hierarchical Animation for Simulation (시뮬레이션의 계층적 애니메이션)

  • 이미라;조대호
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.4
    • /
    • pp.89-107
    • /
    • 1999
  • There are many issues in computer simulation such as verifying model code, validating models, understanding the dynamics of systems and training the personnel. The developers of simulation tool have been interested in the animation since it can help solve the problems related to the above listed issues. In practice, animation is one of the popular method for displaying the simulation output for solving these problems. Trying to display all the graphic objects representing the dynamics of the models being simulated, however, causes the distraction of focus, which results in solving the above listed problems difficult. The redundant graphic objects also Increase the computer computation overhead. This paper presents a hierarchical animation environment in which the users can have better focus on the dynamics of system components. In hierarchical animation environment the users can observe the dynamics of system by selectively choosing the hierarchical level and components with in a level of the hierarchically structured model. Especially when the model is large and complex the selection of observation level is needed. The design approach of the hierarchical animator is based on the DEVS(Discrete Event system Specification) formalism which is theoretically well grounded means of expressing modular and hierarchical models.

  • PDF

Large-Scale Integrated Network System Simulation with DEVS-Suite

  • Zengin, Ahmet
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.452-474
    • /
    • 2010
  • Formidable growth of Internet technologies has revealed challenging issues about its scale and performance evaluation. Modeling and simulation play a central role in the evaluation of the behavior and performance of the large-scale network systems. Large numbers of nodes affect simulation performance, simulation execution time and scalability in a weighty manner. Most of the existing simulators have numerous problems such as size, lack of system theoretic approach and complexity of modeled network. In this work, a scalable discrete-event modeling approach is described for studying networks' scalability and performance traits. Key fundamental attributes of Internet and its protocols are incorporated into a set of simulation models developed using the Discrete Event System Specification (DEVS) approach. Large-scale network models are simulated and evaluated to show the benefits of the developed network models and approaches.

Dependability Analysis of Parallel Video Servers Using Fault Injection Simulation (결함 주입 시뮬레이션을 이용한 병렬 비디오 서버의 의존도 분석)

  • 정지영;김성수
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.2
    • /
    • pp.51-61
    • /
    • 2000
  • In recent years, significant advances in computers and communication technologies have made multimedia services feasible. As a result, various queueing models and cost models on architecture and data placement for multimedia server have been proposed. However, most of these models do not evaluate dependability of systems. In the design phase of a system, simulation is an important experimental means for performance and dependability analysis. Fault injection simulation has been used in evaluation of dependability metric. In this paper, we develop fault injection simulation model to analyze dependability of parallel video servers. In addition, we evaluate reliability and MTTF(Mean Time To Failure) of systems by using the simulator.

  • PDF

Dynamic simulation of the ice storage cooling system (빙축열 냉방 시스템의 동적 시뮬레이션)

  • 한도영;이준호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.815-823
    • /
    • 1999
  • A dynamic simulation program may be used for the development of effective control algorithms for the ice storage cooling system. Simplified effective dynamic models for an ice-on-coil type storage tank, a screw chiller, a water-to-air heat exchanger, three way valves, pipes, pumps, temperature sensors, and controllers were developed. And a dynamic simulation program for the ice storage cooling system was developed by using these dynamic models. Control algorithms for the full storage system were also selected and analyzed in order to show the effectiveness of these models. From the simulation results, it may be concluded that the simulation program developed in this study can be effectively used for the development of improved control algorithms for the ice storage cooling system.

  • PDF

A Study of Channel Modeling and Simulation for Power Line Communication Systems using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 전력선통신 채널모델링 및 시뮬레이션에 관한 연구)

  • Lee, Jong-Joo;Cha, Jae-Sang;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.279-285
    • /
    • 2006
  • Power line communication channels are very complicated and models for communication channels vary with the types of electrical equipment, devices and load fluctuations. So, modeling and analysis of power line channels for implementation of power line communication systems is a very important process. Power line channel modeling and simulation are performed based on power system transient simulation models and power system CAD tools to create precise and accurate models. In this paper, a channel modeling and simulation method is proposed for power line communication systems using PSCAD/EMTDC, in which a PN 63 sequence code generator is applied for impulse response of the power line channel in the simulation model.

Evaluation of the Uncertainties in Rainfall-Runoff Model Using Meta-Gaussian Approach (Meta-Gaussian 방법을 이용한 강우-유출 모형에서의 불확실성 산정)

  • Kim, Byung-Sik;Kim, Bo-Kyung;Kwon, Hyun-Han
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.49-64
    • /
    • 2009
  • Rainfall-runoff models are used for efficient management, distribution, planning, and design of water resources in accordance with the process of hydrologic cycle. The models simplify the transition of rainfall to runoff as rainfall through different processes including evaporation, transpiration, interception, and infiltration. As the models simplify complex physical processes, gaps between the models and actual rainfall events exist. For more accurate simulation, appropriate models that suit analysis goals are selected and reliable long-term hydrological data are collected. However, uncertainty is inherent in models. It is therefore necessary to evaluate reliability of simulation results from models. A number of studies have evaluated uncertainty ingrained in rainfall-runoff models. In this paper, Meta-Gaussian method proposed by Montanari and Brath(2004) was used to assess uncertainty of simulation outputs from rainfall-runoff models. The model, which estimates upper and lower bounds of the confidence interval from probabilistic distribution of a model's error, can quantify global uncertainty of hydrological models. In this paper, Meta-Gaussian method was applied to analyze uncertainty of simulated runoff outputs from $Vflo^{TM}$, a physically-based distribution model and HEC-HMS model, a conceptual lumped model.

  • PDF

Simulation of Moving Storm in a Watershed Using Distributed Models

  • Choi, Gye-Woon;Lee, Hee-Seung;Ahn, Sang-Jin
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.1-16
    • /
    • 1994
  • In this paper distributed models for simulating spatially and temporally varied moving storm in a watershed were developed. The complete simulation in a watershed is achieved through two sequential flow simulations which are overland flow simulation and channel network flow simulation. Two dimensional continuity equation and momentum equation of kinematic approximation were used in the overland flow simulation. On the other hand, in the channel network simulation two types of governing equations which are one dimensional continuity and momentum equations between two adjacent sections in a channel, and continuity and energy equations at a channel junction were applied. The finite difference formulations were used in the channel network model. Macks Creek Experimental Watershed in Idaho, USA was selected as a target watershed and the moving storm on August 23, 1965, which continued from 3:30 P.M. to 5:30 P.M., was utilized. The rainfall intensity fo the moving storm in the watershed was temporally varied and the storm was continuously moved from one place to the other place in a watershed. Furthermore, runoff parameters, which are soil types, vegetation coverages, overland plane slopes, channel bed slopes and so on, are spatially varied. The good agreement between the hydrograph simulated using distributed models and the hydrograph observed by ARS are Shown. Also, the conservations of mass between upstreams and downstreams at channel junctions are well indicated and the wpatial and temporal vaiability in a watershed is well simulated using suggested distributed models.

  • PDF

Development of Simple Dynamic Models for Ship Manoeuvring Simulation (선박 조종 시뮬레이션을 위한 단순 기동 모델 개발)

  • Kim, Dong-Jin;Yeo, Dong-Jin;Rhee, Key-Pyo
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.17-25
    • /
    • 2010
  • It is necessary for the ship dynamic models to realize ship dynamics and to achieve the real-time analysis in the manoeuvring simulation. Generally, simple dynamic models, such as 1st-order differential equation models of turning angle, turning rate, and forward speed, are used in the manoeuvring simulation for multiple ships. Ship dynamic modeling and parameter estimation methods based on its turning test results are proposed in this paper. Parameter estimation methods for the constant speed model and the speed-changing model are mathematically developed and verified by comparing with turning test results of a real ship.

Architecture and performance analysis of multiprocessor ESS (다중 프로세서 전전자 교환기의 구조 및 성능분석)

  • Park, Heon-Chul;Kwon, Wook-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1026-1030
    • /
    • 1987
  • This paper proposes analytic models of the large scale ESS's control system which has the multiprocessor architecture. The performance indices such as the ringback tone delay, busy tone delay, queue length and processor idletime are investigated through the analytic model. The system bottleneck is also analyzed. For the validation of analytic models, its simulation is performed using the SDL/SIM package for the case of 100,000 subscribers. From computer simulation, the results of analytic models are shown to be similar to the results of simulation models, which validates the analytic models.

  • PDF

The Chicken Aorta as a Simulation-Training Model for Microvascular Surgery Training

  • Ramachandran, Savitha;Chui, Christopher Hoe-Kong;Tan, Bien-Keem
    • Archives of Plastic Surgery
    • /
    • v.40 no.4
    • /
    • pp.327-329
    • /
    • 2013
  • As a technically demanding skill, microsurgery is taught in the lab, in the form of a course of variable length (depending on the centre). Microsurgical training courses usually use a mixture of non-living and live animal simulation models. In the literature, a plethora of microsurgical training models have been described, ranging from low to high fidelity models. Given the high costs associated with live animal models, cheaper alternatives are coming into vogue. In this paper we describe the use of the chicken aorta as a simple and cost effective low fidelity microsurgical simulation model for training.