• Title/Summary/Keyword: Simulation EnergyPlus

Search Result 122, Processing Time 0.027 seconds

Comparison of Cooling-Energy Performance Depending on the Economizer-Control Methods in an Office Building (이코노마이저 제어 방법에 따른 사무소 건물의 냉방 에너지 성능 비교)

  • Son, Jeong-Eun;Hyun, In-Tak;Lee, Jea-Ho;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.432-439
    • /
    • 2015
  • Current building procedures seek to minimize external air supplies to reduce the energy consumption of air conditioning, resulting in a high dependency on mechanical ventilation. We therefore studied an economizer-cycle system, whereby the introduction of external air saves energy. We analyzed different economizer-control methods, addressing mixed-air temperatures and outdoor-air fractions according to outdoor-air temperatures; also, we analyzed the energy consumption of the three economizer-cycle control types using detailed EnergyPlus simulation modeling. A differential enthalpy control method showed a lower energy consumption range from 5.8% to 6.2% than that of other methods during the simulated period. A differential dry-bulb control method showed a 12.7% lower energy consumption than the no-economizer method in the intermediate period, but also showed 7.1% more energy consumption during the summer period. When latent heat was not removed due to high summer humidity, we found a significant level of resultant energy consumption.

A Study on the Perfomance Analysis of Low Energy Cooling Systems in Office building (사무소건물의 에너지절약형 냉방시스템 성능분석에 관한 연구)

  • Park, Chang-Bong;Rhee, Eon-Gu
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.89-94
    • /
    • 2010
  • A large portion of the energy cost of a building is cooling and heating to maintain a comfortable indoor environment. Air conditioning is now one of the important parts in the building design, as increase in energy consumption and pollutant emission in energy conversion process. In this study, elements that affects the energy consumption of model building are identified and the perfomance analysis of the alternative a Low Energy Cooling Systems considering characteristics of model building and energy saving performance is analyzed. In this study, elements that affect the energy consumption of office building are identified and energy saving performance of the alternative air conditioning system is analyzed. As a result, applied to earn and suggest basic data for energy saving measures. In this study, EnergyPlus simulation program was used to evaluate the energy load when alternative Low Energy Cooling Systems are applied to the model building. The reliability of simulation program is verified by comparing actual energy load from operation data of building management office and predicted energy load using simulation program. For Low Energy Cooling System application which considers the purpose and characteristics of the building, reasonable and energy-saving air conditioning method obtained by analyzing energy consumption elements for each expected air conditioning methods is used to deduct result of this study.

MATERIAL MATCHING PROCESS FOR ENERGY PERFORMANCE ANALYSIS

  • Jung-Ho Yu;Ka-Ram Kim;Me-Yeon Jeon
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.213-220
    • /
    • 2011
  • In the current construction industry where various stakeholders take part, BIM Data exchange using standard format can provide a more efficient working environment for related staffs during the life-cycle of the building. Currently, the formats used to exchange the data from 3D-CAD application to structure energy analysis at the design stages are IFC, the international standard format provided by IAI, and gbXML, developed by Autodesk. However, because of insufficient data compatibility, the BIM data produced in the 3D-CAD application cannot be directly used in the energy analysis, thus there needs to be additional data entry. The reasons for this are as follows: First, an IFC file cannot contain all the data required for energy simulation. Second, architects sometimes write material names on the drawings that are not matching to those in the standard material library used in energy analysis tools. DOE-2.2 and Energy Plus are the most popular energy analysis engines. And both engines have their own material libraries. However, our investigation revealed that the two libraries are not compatible. First, the types and unit of properties were different. Second, material names used in the library and the codes of the materials were different. Furthermore, there is no material library in Korean language. Thus, by comparing the basic library of DOE-2, the most commonly used energy analysis engine worldwide, and EnergyPlus regarding construction materials; this study will analyze the material data required for energy analysis and propose a way to effectively enter these using semantic web's ontology. This study is meaningful as it enhances the objective credibility of the analysis result when analyzing the energy, and as a conceptual study on the usage of ontology in the construction industry.

  • PDF

Seismic performance enhancement of a PCI-girder bridge pier with shear panel damper plus gap: Numerical simulation

  • Andika M. Emilidardi;Ali Awaludin;Andreas Triwiyono;Angga F. Setiawan;Iman Satyarno;Alvin K. Santoso
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.69-82
    • /
    • 2024
  • In the conventional seismic design approach for a bridge pier, the function of the stopper, and shear key are to serve as mechanisms for unseating prevention devices that retain and transmit the lateral load to the pier under strong earthquakes. This frequently inflicts immense shear forces and bending moments concentrated at the plastic hinge zone. In this study, a shear panel damper plus gap (SPDG) is proposed as a low-cost alternative with high energy dissipation capacity to improve the seismic performance of the pier. Therefore, this study aimed to investigate the seismic performance of the pre-stressed concrete I girder (PCI-girder) bridge equipped with SPDG. The bridge structure was analyzed using nonlinear time history analysis with seven-scaled ground motion records using the guidelines of ASCE 7-10 standard. Consequently, the implementation of SPDG technology on the bridge system yielded a notable decrease in maximum displacement by 41.49% and a reduction in earthquake input energy by 51.05% in comparison to the traditional system. This indicates that the presence of SPDG was able to enhance the seismic performance of the existing conventional bridge structure, enabling an improvement from a collapse prevention (CP) level to an immediate occupancy (IO).

Comparative of Energy-Saving by Green Roof Type on Urban Office Building (도심 오피스건물의 옥상녹화 조성 유형별 건물에너지 절감 비교 연구)

  • Kim, Jeong-Ho;Kwon, Ki-Uk;Joo, Chang-Hun;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.23 no.8
    • /
    • pp.1437-1446
    • /
    • 2014
  • This study, the urban energy used office building green roof type composition of the target by analyze building energy reductions. Green roof is total 6 types(type A~F) were selected, EnergyPlus the energy simulation programs were used. Top floor of green roof types evaluation, the reduction of the cooling peak load type E(1.26%), type D(1.30%), type C(1.37%), type B(1.45%), type F(1.49%), and heating peak load is type D(1.32%), type E(1.40%), type C(1.47%), type F(1.69%), type B(2.13%) order. Annual cooling load of heating load is reduced more than about 1% effect. The heating load reduction ratio for a maximum of 9% respectively. Cooling peak load of the building energy performance evaluation of type F > type B > type C > type D > type E in the order and in the case of peak loads heating type B > type F > type D > type E>type C order. Annual total energy use reduction of 1.07 to 1.22% and earn, type B in the best good. In primary energy use reductions in the presence of a green roof were in the 4249~4876 kWh/yr. Annual $CO_2$ emissions reductions of unapplied type A were analyzed on average 469.78 kg.

Design of Living Lab with BEMS via EnergyPlus for Scheduling HVAC System Considering Occupancy Schedule (리빙랩(Living-lab) 설계를 위한 BEMS 및 EnergyPlus 기반 재실 여부 고려 공조계획 도출)

  • Lee, Jae-Ho;Kim, Sung-Joong;Yoon, Yong-Tae;Kim, Kyoung-Hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1135-1145
    • /
    • 2022
  • Due to increase in concerns related to the climate change, state-wide promotion of the carbon neutrality has been in progress thus far. Smart City could be one of the measures as the initiative to mitigate the missions process. The primary purpose of Smart City can be summarized to be maximization of the social net-beneift to be returned for the local citizens and derivation of the optimal pattern of the energy consumption could belong to one of the elements included in the net-benefit. Currently, the energy consumption by the buildings has been determined to be responsible for the greatest consumption among the sectors considered to be energy-intensive. Moreover, considering the fact that the consumption by operations of HVAC is responsible for nearly 40% in the commercial buildings, it is virtually not possible to optimize schedules for the energy consumption with considerable deliverables from the perspective of the urban planners. Thus, the methods to implement the optimal schedules for the HVAC commissioned with the OHUs were concluded to be the suitable candidate resources for the simulation by EnergyPlus capable of monitoring the thermal changes in each subject space in the present research.

Steady-state Simulation and Energy-saving Optimization of Monoethylene Glycol Production Process (모노에틸렌 글리콜 생산공정의 정상상태 모사 및 에너지 절약 최적화 연구)

  • Kim, Tae Ki;Jeon, In Cheol;Chung, Sung Taik
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.903-914
    • /
    • 2008
  • This study was undertaken for the production capacity expansion and energy saving through entire process simulation and optimization for the commercial process of manufacturing monoethylene glycol as a staple from ethylene oxide. Aspen $Plus^{TM}$(ver. 2006) was employed in the simulation and optimization work. The multicomponent vapor-liquid equilibria involved in the process were calculated using the NRTL-RK equation. As for the binary interaction parameters required for a total of 91 binary systems, those for 8 systems were self-supplied by the simulator, those for 28 systems were estimated through regression of the VLE data in the literature, and the remainder were estimated with the estimation system built in the simulator. Subsequent to ascertaining the accuracy of the generated parameters through comparison between actual and simulated process data, sensitive variables highly affecting the process were searched and selected using sensitivity analysis tool in the simulator. The optimum operating conditions minimizing the total heat duty of the process were investigated using the optimization tool based on the successive quadratic programming in the simulator.

An Analysis of Energy Consumption Types Considering Life Patterns of Single-person Households (1인 가구 거주자의 생활패턴이 고려된 에너지소요량 유형 분석)

  • Lee, Seunghui;Jung, Sungwon;Lim, Ki-Taek
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.1
    • /
    • pp.37-46
    • /
    • 2019
  • The energy of the building is influenced by the user 's activity due to the population, society, and economic characteristics of the building user. In order to obtain accurate energy information, the difference in the amount of energy consumption by the activities and characteristics of building users should be identified. The purpose of the study is to identify the difference in the amount of energy consumption by the user's activities in the same building, and to analyse the relationship between user's activities and demographic, social and economic characteristics. For research, energy simulation is performed based on actual user activity schedule. The results of the simulation were clustered by using K-Means clustering, a machine learning technique. As a result, four types of users were derived based on the amount of energy consumption. The more energy used in a cluster, the lower the user's income level and older. The longer a user's indoor activity times, the higher the energy use, and these activities relate to the user's characteristics. There is more than twice the difference between the group that uses the least energy consumption and the group that uses the most energy consumption.

A Simulation Appraisal of Energy Performance in Office Building by Different Types of Air-Conditioning (공조방식에 따른 사무소 건물의 에너지 성능 평가)

  • Choi, Jong-Dae;Choi, Dong-Suk;Yun, Geun-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.8
    • /
    • pp.612-620
    • /
    • 2012
  • High economic growth causes increase of the building energy consumption. The energy consumption for HVAC system accounts for 40~50% of the whole building consumption. The trend for building is large-scale and high-rise. Because of the trend, the energy consumption is becoming bigger than before. Nowadays, HVAC system design are recognized as the solution for a energy-saving. This paper is focused on the energy performance evaluation of central air-conditioning system(water-based) and system air-conditioning that were applied to the office building. The systems are modeled and simulated by using EnergyPlus Software 6.0. After the Simulation, annual cooling and heating energy consumption were calculated. It was found that the system air-conditioning can reduce the energy consumption approximately 55.24% annually compared with the central air-conditioning system(water-cooled). In addition, about 46.13% of annual operating costs can be reduced by use of system air-conditioning.

Evaluating the Feasibility of a Ground Source Heat pump System for an Elderly Care Center through Simulation Approach (시뮬레이션을 통한 노인 요양 시설의 지열 히트펌프 시스템 적용 가능성 평가)

  • Byonghu Sohn;Young-Sun Kim;Seung-Eon Lee
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.4
    • /
    • pp.39-52
    • /
    • 2023
  • This study analyzes the energy performance of a elderly care center building and the applicability of a ground source heat pump (GSHP) system through simulation approach. For this purpose, a building information modeling (BIM) program and an energy performance calculation program were used. The impact of the mechanical ventilation system on the energy requirements of the heating and cooling system and the indoor environment was also analyzed, focusing on the change in indoor carbon dioxide (CO2) concentration, which is a representative indicator of the indoor environment (air quality). The simulation results showed that the target building exceeds Level 7 in terms of simulated primary energy consumption or actual energy consumption. In addition, it was analyzed that the target building could not maintain the indoor CO2 concentration below the standard concentration by natural ventilation through window opening alone. Combining the GSHP system with the mechanical ventilation system (Case B and Case C) can further reduce the overall energy consumption by reducing the amount of outdoor air introduced by opening windows. The cost savings compared to the baseline case are estimated to be 67.3% for Case A, 63.7% for Case B, 65.5% for Case C, and 42.5% for Case D. It is necessary to analyze the impact of various renewable energy technologies and passive ones on the energy performance and indoor environment of elderly care centers.