• 제목/요약/키워드: Simulating wave nearshore(SWAN)

검색결과 13건 처리시간 0.023초

SWAN 모델을 이용한 낙동강 하구역의 입사파향별 파랑분포 특성 (Analysis of Wave Distribution at Nakdong River Estuary Depending on the Incident Wave Directions Based on SWAN Model Simulation)

  • 박순;윤한삼;박효봉;류승우;류청로
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제12권3호
    • /
    • pp.188-196
    • /
    • 2009
  • 본 연구에서는 천해역 파랑추산모델인 SWAN(Simulating WAves Nearshore) 모델을 이용하여 파향에 따른 낙동강 하구역의 파랑분포 수치모의를 수행하고 탁월 파향 변화에 따른 낙동강 하구역 파랑 분포 특성을 정량적으로 분석하고자 하였다. 그 결과를 요약하면 다음과 같다. 천해역인 낙동강 하구역에서의 파랑분포는 S계열의 파향이 우세한 경우 파고비가 가장 높게 분포하였으며 다음으로 SSE, SSW, SE, SW계열의 순으로 파고분포가 높은 것으로 나타났다. S 및 SSW, SSE 파향이 탁월한 경우 사주섬 전면의 극천해역까지 파랑에너지가 전달되어 높은 파고가 발생하는 것으로 나타났다. 또한 파향별 파형경사의 단면 분포 계산결과에 따르면 해저경사가 완만한 가덕도 동측해역(낙동강 하구역 남서측)에서 파고비는 0.4~0.6이었으며, 다대포 서측해역(낙동강 하구역 남동측)에서 파고비는 0.5~0.6으로서 파고비의 감소폭이 가덕도 동측해역(낙동강 하구역 남서측)보다 크게 나타났다.

  • PDF

해일-조석-파랑을 결합한 폭풍해일 수치모델 개발에 관한 연구 (Study on Development of Surge-Tide-Wave Coupling Numerical Model for Storm Surge Prediction)

  • 박종길;김명규;김동철;윤종성
    • 한국해양공학회지
    • /
    • 제27권4호
    • /
    • pp.33-44
    • /
    • 2013
  • IIn this study, a wave-surge-tide coupling numerical model was developed to consider nonlinear interaction. Then, this model was applied and calculations were made for a storm surge on the southeast coast. The southeast coast was damaged by typhoon "Maemi" in 2003. In this study, we used a nearshore wind wave model called SWAN (Simulating WAves Nearshore). In addition, the Meyer model was used for the typhoon model, along with an ocean circulation model called POM (Princeton Ocean Model). The wave-surge-tide coupling numerical model could calculate exact parameters when each model was changed to consider the nonlinear interaction.

SWAN모델을 이용한 제주해역 장기 파랑분포 특성 연구 (Analysis of Long-Term Wave Distribution at Jeju Sea Based on SWAN Model Simulation)

  • 류황진;홍기용;신승호;송무석;김도영
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제7권3호
    • /
    • pp.137-145
    • /
    • 2004
  • 제주해역의 상기 파랑분포 특성을 제3세대 파랑모델인 SWAN모델에 의한 시뮬레이션을 통해 고찰하였다. 제주해역은 한국 연안에서 파랑에너지 밀토가 상대적으로 큰 해역으로 파력발전에 적합한 후보지이며, 파력발전 효율은 해역의 파랑특성 인자들에 밀접히 연관되어 있다. 파랑분포는 한국해양연구원의 광역 장기 파랑추산 자료의 월평균 파랑특성을 경계조건으로 1 km 격자의 SWAN모델 시뮬레이션을 통해 획득하였으며, 파랑분포 해석은 유의파고, 평균 파향, 평균 과주기의 계절적ㆍ공간적 변화특성 고찰을 주목적으로 하였다. 유의파고는 겨울과 여름이 우세하며, 지역적으로는 제주도의 서쪽이 동쪽에 비해 유의파고가 높다. 유의파고의 최고치는 겨울에 북서쪽 해역에서 발생하며, 여름철의 남동쪽 해역이 다음으로 우세하고, 봄가을은 전체적으로 파고가 낮으나 분포가 비교적 균일하다. 파향의 분포는 회절의 영향을 받는 배후지역을 제외하면, 여름에는 북서 방향이 지배적이고, 겨울에는 남동 방향이 지배적이다. 파주기는 여름과 겨울철에 길고, 동쪽에 비해 서쪽 해역에서 길게 나타난다. 파주기의 최대치는 겨울에 서쪽 해역에서 발생하고, 여름에는 남쪽 해역의 파주기가 다소 우세하나 비교적 균일한 분포를 갖는다.

  • PDF

수공구조물 여유고 산정을 위한 파랑모형의 적용성 검토 (Review on Application of Wave Model for Calculation of Freeboard in Hydraulic Structure)

  • 김경호;이호진
    • 한국해양공학회지
    • /
    • 제21권1호
    • /
    • pp.25-30
    • /
    • 2007
  • Most of dams and reservoirs were made from natural materials, such as soil, sand and gravel. This type of hydraulic structure has the danger of collapse by overflow during a flood. Freeboard is the vertical distance between the crest of the dam and the full supply level in the reservoir. It must be sufficient to prevent overtopping from over flow. Thus, freeboard determination involves engineering judgment, statistical analysis, and consideration of the damage that would result from the overtopping of a hydraulic structure. This study attempts to calculate the wave height in dam, which is needed for the determination of the freeboard of the dam. Chung-ju dam is selected as the study area. Using the empirical formulas, the wave heights in dam were calculated, and the results were compared with those by the SWAN model, which is a typical wave model. The difference between the calculated results from the empirical formulas and those by the SWAN model is considerably large. This is because empirical equations consider only fetch or fetch and wind velocity, while the SWAN model considers depth and topography data as well.

동해안 이상 너울 추산에 관한 고찰 (Examinations on the Wave Hindcasting of the Abnormal Swells in the East Coast)

  • 김태림;이강호
    • 한국해양공학회지
    • /
    • 제22권6호
    • /
    • pp.13-19
    • /
    • 2008
  • Abnormally large swells that appeared on the coast of the East Sea in October in 2005 and 2006 were simulated using SWAN model to examine the accuracy of the model for future forecasting Seawind data calculated based on the weather chart ant bottom topography were used for input data, and the model was operated more than 20 days before the observed swells to avoid the problems from the cold start of the model. The comparisons with observed wind and wave data were unsatisfactory and neededmore improvement in terms of swell component in the wave model as well as the quality of seawind data. The satellite wind and wave data can be good candidates for future comparison of the wave model results in the East Sea.

SWAN을 이용한 파랑-바람 공존장에서의 파랑 특성에 관한 연구

  • 정재훈;이승건
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2007년도 추계학술대회 및 제23회 정기총회
    • /
    • pp.127-128
    • /
    • 2007
  • 파랑이 외해로부터 연안으로 내습하면서 발생되는 파랑 변형, 즉, 굴절, 회절, 천수 그리고 쇄파 동에 의한 변형을 일으킨다. 이러한 파랑변형을 일으키는 주된 물리적 인자는 수심의 변화이지만 태풍과 같은 강한 바람이 부는 해역에서는 바람인자를 반드시 고려해야만 한다. 본 연구에서는 바람효과가 고려된, 에너지 스펙트럼 모형 (SWAN; Simulating WAve Nearshore) 을 이용한 수치실험을 수행하였다. 그리고 해석해 및 Karlsson 모형에 대한 수치 해와 비교를 통해 모델의 검증을 실시하였다. 또한 부산항 설 해역을 대상으로 태풍 매미 내습 시 입사 파랑 조건을 적용하였으며 실제 관측 치와 바람효과의 유무에 따른 수치 계산치를 비교한 결과, 바람효과를 고려한 계산결과가 실제 관측치와의 양호한 일치를 나타내었다.

  • PDF

Sensitivity of Input Parameters in the Spectral Wave Model

  • 박효봉
    • 한국해양공학회지
    • /
    • 제23권2호
    • /
    • pp.28-36
    • /
    • 2009
  • Many researches have been done to define the physical parameters for the wave generation and transformation over a coastal region. However, most of these have been limited to the application of particular conditions, as they are generally too empirical. To yield more reasonable wave estimation using a spectral wave model, it is important to understand how they work for the wave estimation. This study involved a comprehensive sensitivity test against the spectral resolution and the physical source/sink terms of the spectral wave model using SWAN and TOMAWAC, which have the same physical background with several different empirical/theoretical formulations. The tests were conducted for the East Anglian coast, UK, which is characterized by a complex bathymetry due to several shoals and offshore sandbanks. For the quantitative and qualitative evaluation of the models' performance with different input conditions, the wave elements and spectrums predicted at representative sites the East Anglia coast were compared/analyzed. The spectral resolution had no significant effect on the model results, but the lowest resolution on the frequency and direction induced underestimations of the wave height and period. The bottom friction and depth-induced breaking terms produced relatively high variations in the wave prediction, depending on which formulation was applied. The terms for the quadruplet and whitecapping had little effect on the wave estimation, whereas the triads tended to predict shorter and higher waves by energy transferring to higher frequencies.

Effects of Storm Waves Caused by Typhoon Bolaven (1215) on Korean Coast: A Comparative Analysis with Deepwater Design Waves

  • Taegeon Hwang;Seung-Chul Seo;Hoyeong Jin;Hyeseong Oh;Woo-Dong Lee
    • 한국해양공학회지
    • /
    • 제38권4호
    • /
    • pp.149-163
    • /
    • 2024
  • This paper employs the third-generation simulating waves nearshore (SWAN) ocean wave model to estimate and analyze storm waves induced by Typhoon Bolaven, focusing on its impact along the west coast and Jeju Island of Korea. Utilizing reanalyzed meteorological data from the Japan Meteorological Agency meso scale model (JMA-MSM), the study simulated storm waves from Typhoon Bolaven, which maintained its intensity up to high latitudes as it approached the Korean Peninsula in 2012. Validation of the SWAN model against observed wave data demonstrated a strong correlation, particularly in regions where wind speeds exceeded 20 m/s and wave heights surpassed 5 m. Results indicate significant storm wave heights across Jeju Island and Korea's west and southwest seas, with coastal grid points near islands recording storm wave heights exceeding 90% of the 50-year return period design wave heights. Notably, specific grid points near islands in the northern West Sea and southwest Jeju Island estimated storm wave heights at 90.22% and 91.48% of the design values, respectively. The paper highlights the increased uncertainty and vulnerability in coastal disaster predictions due to event-driven typhoons and emphasizes the need for enhanced accuracy and speed in typhoon wave predictions amid the escalating climate crisis.

Optimization of SWAN Wave Model to Improve the Accuracy of Winter Storm Wave Prediction in the East Sea

  • Son, Bongkyo;Do, Kideok
    • 한국해양공학회지
    • /
    • 제35권4호
    • /
    • pp.273-286
    • /
    • 2021
  • In recent years, as human casualties and property damage caused by hazardous waves have increased in the East Sea, precise wave prediction skills have become necessary. In this study, the Simulating WAves Nearshore (SWAN) third-generation numerical wave model was calibrated and optimized to enhance the accuracy of winter storm wave prediction in the East Sea. We used Source Term 6 (ST6) and physical observations from a large-scale experiment conducted in Australia and compared its results to Komen's formula, a default in SWAN. As input wind data, we used Korean Meteorological Agency's (KMA's) operational meteorological model called Regional Data Assimilation and Prediction System (RDAPS), the European Centre for Medium Range Weather Forecasts' newest 5th generation re-analysis data (ERA5), and Japanese Meteorological Agency's (JMA's) meso-scale forecasting data. We analyzed the accuracy of each model's results by comparing them to observation data. For quantitative analysis and assessment, the observed wave data for 6 locations from KMA and Korea Hydrographic and Oceanographic Agency (KHOA) were used, and statistical analysis was conducted to assess model accuracy. As a result, ST6 models had a smaller root mean square error and higher correlation coefficient than the default model in significant wave height prediction. However, for peak wave period simulation, the results were incoherent among each model and location. In simulations with different wind data, the simulation using ERA5 for input wind datashowed the most accurate results overall but underestimated the wave height in predicting high wave events compared to the simulation using RDAPS and JMA meso-scale model. In addition, it showed that the spatial resolution of wind plays a more significant role in predicting high wave events. Nevertheless, the numerical model optimized in this study highlighted some limitations in predicting high waves that rise rapidly in time caused by meteorological events. This suggests that further research is necessary to enhance the accuracy of wave prediction in various climate conditions, such as extreme weather.

파력발전 적지 선정을 위한 제주 해역 파랑에너지 분포특성 연구 (Wave Energy Distribution at Jeju Sea and Investigation of Optimal Sites for Wave Power Generation)

  • 홍기용;류황진;신승호;홍석원
    • 한국해양공학회지
    • /
    • 제18권6호
    • /
    • pp.8-15
    • /
    • 2004
  • Wave power distribution is investigated to determine the optimal sites for wave power generation at Jeju sea which has the highest wave energy density in the Korean coastal waters. The spatial and seasonal variation of wave power per unit length is calculated in the Jeju sea area based on the monthly mean wave data from 1979 to 2002 which is produced by the SWAN wave model simulation in prior research. The selected favorable locations for wave power generation are compared in terms of magnitude of wave energy density and distribution characteristics of wave parameters. The results suggest that Chagui-Do is the most optimal site for wave power generation in the Jeju sea. The seasonal distribution of wave energy density reveals that the highest wave energy density occurs in the northwest sea in the winter and it is dominated by wind waves, while the second highest one happens at south sea in the summer and it is dominated by a swell sea. The annual average of wave energy density shows that it gradually increases from east to west of the Jeju sea. At Chagui-Do, the energy density of the sea swell sea is relatively uniform while the energy density of the wind waves is variable and strong in the winter.