• Title/Summary/Keyword: Simulated rainfall

Search Result 435, Processing Time 0.027 seconds

Flood Runoff Computation for Mountainous Small Basins using WMS Model (WMS 모형을 활용한 산지 소하천 유역의 유출량 산정)

  • Chang, Hyung Joon;Lee, Jung Young;Lee, Hyo Sang
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.9-15
    • /
    • 2021
  • The frequency of flash floods in mountainous areas is increasing due to the abnormal weather that occurs increasingly in the recent, and it causes human and material damages is increasing. Various plans for disaster mitigation have been established, but artificial plans such as raising embankment and dredging operation are inappropriate for valleys and rivers in national parks that prioritize nature protection. In this study, flood risk assessment was conducted for Gyeryongsan National Park in Korea using the WMS (Watershed Modeling System)which is rainfall runoff model for valleys and rivers in the catchment. As the result, it was simulated that it is flooding in three sub-catchments (Jusukgol, Sutonggol, Dinghaksa) of a total in Gyeryongsan National Park when rainfall over the 50 years return period occurs, and it was confirmed that the risk of trails and facilities what visitors are using was high. The risk of trails in national parks was quantitatively presented through the results of this study, and we intend to present the safe management guidelines of national parks in the future.

Parameter Sensitivity Analysis of VfloTM Model In Jungnang basin (중랑천 유역에서의 VfloTM 모형의 매개변수 민감도 분석)

  • Kim, Byung Sik;Kim, Bo Kyung;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.503-512
    • /
    • 2009
  • Watershed models, which are a tool for water cycle mechanism, are classified as the distributed model and the lumped model. Currently, the distributed models have been more widely used than lumped model for many researches and applications. The lumped model estimates the parameters in the conceptual and empirical sense, on the other hand, in the case of distributed model the first-guess value is estimated from the grid-based watershed characteristics and rainfall data. Therefore, the distributed model needs more detailed parameter adjustment in its calibration and also one should precisely understand the model parameters' characteristics and sensitivity. This study uses Jungnang basin as a study area and $Vflo^{TM}$ model, which is a physics-based distributed hydrologic model, is used to analyze its parameters' sensitivity. To begin with, 100 years frequency-design rainfall is derived from Huff's method for rainfall duration of 6 hours, then the discharge is simulated using the calibrated parameters of $Vflo^{TM}$ model. As a result, hydraulic conductivity and overland's roughness have an effect on runoff depth and peak discharge, respectively, while channel's roughness have influence on travel time and peak discharge.

Predicting Landslide Damaged Area According to Climate Change Scenarios (기후변화 시나리오를 적용한 산사태 피해면적 변화 예측)

  • Song Eu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.376-386
    • /
    • 2023
  • Due to climate changes, landslide hazards in the Republic of Korea (hereafter South Korea) continuously increase. To establish the effective landslide mitigation strategies, such as erosion control works, landslide hazard estimation in the long-term perspective should be proceeded considering the influence of climate changes. In this study, we examined the change in landslide-damaged areas in South Korea responding to climate change scenarios using the multivariate regression method. Data on landslide-damaged areas and rainfall from 1981-2010 were used as a training dataset. Sev en indices were deriv ed from rainfall data as the model's input data, corresponding to rainfall indices provided from two SSP scenarios for South Korea: SSP1-2.6 and SSP5-8.5. Prior to the multivariate regression analysis, we conducted the VIF test and the dimension analysis of regression model using PCA. Based on the result of PCA, we developed a regression model for landslide damaged area estimation with two principal components, which cov ered about 93% of total v ariance. With climate change scenarios, we simulated landslide-damaged areas in 2030-2100 using the regression model. As a result, the landslide-damaged area will be enlarged more than the double of current annual mean landslide damaged area of 1981-2010; It infers that landslide mitigation strategies should be reinforced considering the future climate condition.

Estimation of Flood Flow and Inundation Range of the Aprokgang(Riv.) in 2024 using Satellite Images (위성영상을 이용한 2024년 압록강 홍수량 및 침수범위 추정)

  • Kim, Joo-Hun;Choi, Yun-Seok;Kim, Dong-Phil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.673-681
    • /
    • 2024
  • The purpose of this study was to estimate the flood flow and the range of inundation in the downstream area of the Aprokgang(Riv.) that occurred in 2024 using satellite images. The study area was the Aprokgang(Riv.) watershed, the longest river in North Korea. Satellite image Sentinel-1A(SAR-C) data was used for flood analysis before and after the flood. As a result of the analysis of the inundation range using satellite images, it was confirmed that there was a change in the water surface before and after the flood. However, the image after the flood was taken six days after the peak discharge of the flood, so there are limitations in extracting the accurate extent of the flooding. As a result of the analysis using satellite precipitation and ground observed rainfall, the rainfall exceeded 500-year rainfall amount, and the peak-flow was simulated as 85,102 m3/s. As a result of analyzing the inundation range by using the contour lines from AW3D30, it was determined that the inundation occurred around the 15 m contour line. In the future, it is need to conduct a study that can extract more scientifically the inundation range through the use of the inundation analysis model.

Effects of Lignocellulosic Growing Media to The Prevention of Forest Soil Erosion

  • Jo, Jong-Soo;Ha, Si Young;Jung, Ji Young;Kim, Ji-Su;Nam, Jeong Bin;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.419-431
    • /
    • 2017
  • The forest slopes cause substantial local changes in soil properties and an increase in soil erosion after extreme rainstorms. The high soil erosion rates on forest slopes need the effective use of growing media to control the soil runoff. Therefore, we prepared six different lignocellulosic growing media such as peat, perlite, and wood meal as the base materials and carboxymethyl cellulose (CMC), glucomannan, starch, old corrugated containerboard, and computer printout as the additional materials for the prevention of simulated rainfall-induced runoff. The growing media containing old corrugated containerboard efficiently reduced the percentage of soil runoff; however, it could not completely cushion the influence of crust. The best results for plant growth, except in the leaf area, were also obtained with the growing media containing old corrugated containerboard, suggesting an interesting way of paper recycling and an economic benefit for plant or crop growth in forest slope.

The Management of Nonpoint Source and Storm Water Reduction with LID Techniques in Inchon City, South Korea

  • Lim, Dohun;Lee, Yoonjin
    • Journal of Environmental Science International
    • /
    • v.24 no.10
    • /
    • pp.1239-1251
    • /
    • 2015
  • Impervious areas have been expanded by urbanization and the natural structure of water circulation has been destroyed. The limits of centralized management for controlling storm water runoff in urban areas have been suggested. Low impact development (LID) technologies have been promoted as a crucial alternative, establishing a connection with city development plans to build green infrastructures in environmentally friendly cities. Thus, the improvement of water circulation and the control of nonpoint source were simulated through XP-SWMM (storm water and wastewater management model for experts) in this study. The application of multiple LID combination practices with permeable pavements, bioretention cells, and gutter filters were observed as reducing the highest runoff volume by up to 70%. The results from four different LID installation scenarios indicated that permeable paving is the most effective method for reducing storm water runoff. The rate of storm water runoff volume reduced as the rainfall duration extended. Based on the simulation results, each LID facility was designed and constructed in the target area. The LID practices in an urban area enable future studies of the analysis of the criteria, suitable capacity, and cost-efficiency, and proper management methods of various LID techniques.

Integrated Storage Function Model with Fuzzy Control for Flood Forecasting (II) - Theory and Proposal of Model - (홍수예보를 위한 통합저류함수모형의 퍼지제어 (II) - 이론의 모형의 수립 -)

  • Lee, Jeong-Gyu;Kim, Han-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.701-709
    • /
    • 2000
  • Integrated storage function model (ISFM) is applied to some rainfall-runoff events of the selected basins in Korea to show validity of the proposed model. Comparing the numerical results of the model with the field measurements, the simulated hydrographs and peak flood discharges for the most part showed good agreements, except the occurrence time of the peak discharges which showed a bit discrepancy, and they showed it was very hard to have a sufficient lead-time to forecast the flood when the upstream inflow of the channel reach was more dominant than the inflow from the residual watershed of the channel.hannel.

  • PDF

Quantitative Estimation of Pollution Loading from Hwaseong Watershed using BASINS/HSPF (BASINS/HSPF를 이용한 화성유역 오염부하량의 정량적 평가)

  • Jung, Kwang-Wook;Yoon, Chun-G.;Jang, Jae-Ho;Kim, Hyung-Chul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.61-74
    • /
    • 2007
  • A mathematical modeling program called Hydrological Simulation Program-FORTRAN (HSPF) developed by the United States Environmental Protection Agency (EPA) was applied to Hwaseong watershed. It was run under BASINS (Better Assessment Science for Integrating Point and Nonpoint Sources) program, and the model was validated using monitoring data of $2002{\sim}2005$. The model efficiency of runoff ranged from good to fair in comparison between simulated and observed data, while it was from very good to poor in the water quality parameters. But its reliability and performance were within the expectation considering complexity of the watershed and pollutant sources. The nonpoint source (NPS) loading for T-N and T-P during the monsoon rainy season (June to September) was about 80% of total NPS loading, and runoff volume was also in a similar range. However, NPS loading for BOD ($55{\sim}60%$) didn't depend on rainfall because BOD was mostly discharged from point source (more than 70%). And water quality was not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. BASINS/HSPF was applied to the Hwaseong watershed successfully without difficulty, and it was found that the model could be used conveniently to assess watershed characteristics and to estimate pollutant loading including point and nonpoint sources in watershed scale.

Applications of a GIS-based Paddy Inundation Simulation System (GIS 기반 농경지 침수모의시스템의 구축 및 적용)

  • Kim , Sang-Min;Park , Chong-Min;Park , Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.107-116
    • /
    • 2004
  • A GIS-based paddy inundation simulation system which is capable of simulating temporal and spatial inundation processes was established and applied in this paper. The system is composed of HEC-GeoHMS, and HEC-GeoRAS modules which interface the GIS and flood runoff models, and HEC-HMS, and HEC-RAS models which estimate the flood runoff. It was used to simulate storm runoff and inundation for a small rural watershed, the Baran HP#7, which is 10.69 $km^2$ in size. The simulated peak runoff, time to peak, and total direct runoff for eight storms were compared with the observed data. The results showed that the coefficient of determination ($R^2$) for the observed peak runoff was 0.99 and an error, RMSE, 11.862 $m^3$/s for calibration stages. In the model verification, $R^2$ was 0.99 and RMSE 1.296 $m^3$/s. Paddy inundation for each paddy growing stages in study watershed were estimated using verified inundation simulation system when probability rainfall was applied.

Runoff Analysis on the Physically-Based Conceptual Time-Continuous Runoff Model (물리적.개념적 연속 유출모형에 의한 유출해석)

  • 배덕효;조원철
    • Water for future
    • /
    • v.28 no.6
    • /
    • pp.193-202
    • /
    • 1995
  • The subjective research attempts to apply a rainfall-runoff model capable of considering time-variation of soil water contents which are highly correlated to the river flows on the qpqyungchang river basin and to evaluate its performance for flow forecasting. The model used in this study is a physically-based conceptual time-continuous model, which is composed of the Sacramento soil moisture accounting model and the nonlinear multiple conceptual reservoirs model. The daily precipitation and evaporation data for 7 years and for 3 years were used for the parameter estimation and the model verification, respectively. As a result, the flows including a significant flood event were well simulated, and the cross-correlation coefficient between observed flows and computed flows for the verification periods was 0.87, but in general computed flows were underestimated for the low-flow periods. Also, the effects of precipitation and soil water content to the river flows were analysed for the flood and the drought.

  • PDF