• 제목/요약/키워드: Simulated biological model

검색결과 121건 처리시간 0.025초

선행토양함수조건(AMC)을 고려한 L-THIA WWW 직접유출 모의 정확성 평가 (Evaluation of L-THIA WWW Dimet Runoff Estimation with AMC Adjustment)

  • 김종건;박윤식;전지홍;;안재훈;박영곤;김기성;최중대;임경재
    • 한국물환경학회지
    • /
    • 제23권4호
    • /
    • pp.474-481
    • /
    • 2007
  • With population growth, industrialization, and urbanization within the watershed, the hydrologic response changed dramatically, resulting in increases in peak flow with lesser time to peak and total runoff with shortened time of concentration. Infiltration is directly affected by initial soil moisture condition, which is a key element to determine runoff. Influence of the initial soil moisture condition on hydrograph analysis should be evaluated to assess land use change impacts on runoff and non-point source pollution characteristics. The Long-Term Hydrologic Impact Assessment (L-THIA) model has been widely used for the estimation of the direct runoff worldwide. The L-THIA model was applied to the Little Eagle Creek (LEC) watershed and Its estimated direct runoff values were compared with the BFLOW filtered direct runoff values by other researchers. The $R^2$ value Was 0.68 and the Nash-Sutcliffe coefficient value was 0.64. Also, the L-THIA estimates were compared with those separated using optimized $BFI_{max}$ value for the Eckhardt filter. The $R^2$ value and the Nash-Sutcliffe coefficient value were 0.66 and 0.63, respectively. Although these higher statistics could indicate that the L-THIA model is good in estimating the direct runoff reasonably well, the Antecedent Moisture Condition (AMC) was not adjusted in that study, which might be responsible for mismatches in peak flow between the L-THIA estimated and the measured peak values. In this study, the L-THIA model was run with AMC adjustment for direct runoff estimation. The $R^2$ value was 0.80 and the Nash-Sutcliffe coefficient value was 0.78 for the comparison of L-THIA simulated direct runoff with the filtered direct runoff. However there was 42.44% differences in the L-THIA estimated direct runoff and filtered direct runoff. This can be explained in that about 80% of the simulation period is classified as 'AMC I' condition, which caused lower CN values and lower direct runoff estimation. Thus, the coefficients of the equation to adjust CN II to CN I and CN III depending on AMC condition were modified to minimize adjustments impacts on runoff estimation. The $R^2$ and the Nash-Sutcliffe coefficient values increase, 0.80 and 0.80 respectively. The difference in the estimated and filtered direct runoff decreased from 42.44% to 7.99%. The results obtained in this study indicate the AMC needs to be considered for accurate direct runoff estimation using the L-THIA model. Also, more researches are needed for realistic adjustment of the AMC in the L-THIA model.

소양강댐 유역의 유출 자동보정을 위한 SWAT-CUP의 적용 및 평가 (Application of SWAT-CUP for Streamflow Auto-calibration at Soyang-gang Dam Watershed)

  • 류지철;강현우;최재완;공동수;금동혁;장춘화;임경재
    • 한국물환경학회지
    • /
    • 제28권3호
    • /
    • pp.347-358
    • /
    • 2012
  • The SWAT (Soil and Water Assessment Tool) should be calibrated and validated with observed data to secure accuracy of model prediction. Recently, the SWAT-CUP (Calibration and Uncertainty Program for SWAT) software, which can calibrate SWAT using various algorithms, were developed to help SWAT users calibrate model efficiently. In this study, three algorithms (GLUE: Generalized Likelihood Uncertainty Estimation, PARASOL: Parameter solution, SUFI-2: Sequential Uncertainty Fitting ver. 2) in the SWAT-CUP were applied for the Soyang-gang dam watershed to evaluate these algorithms. Simulated total streamflow and 0~75% percentile streamflow were compared with observed data, respectively. The NSE (Nash-Sutcliffe Efficiency) and $R^2$ (Coefficient of Determination) values were the same from three algorithms but the P-factor for confidence of calibration ranged from 0.27 to 0.81 . the PARASOL shows the lowest p-factor (0.27), SUFI-2 gives the greatest P-factor (0.81) among these three algorithms. Based on calibration results, the SUFI-2 was found to be suitable for calibration in Soyang-gang dam watershed. Although the NSE and $R^2$ values were satisfactory for total streamflow estimation, the SWAT simulated values for low flow regime were not satisfactory (negative NSE values) in this study. This is because of limitations in semi-distributed SWAT modeling structure, which cannot simulated effects of spatial locations of HRUs (Hydrologic Response Unit) within subwatersheds in SWAT. To solve this problem, a module capable of simulating groundwater/baseflow should be developed and added to the SWAT system. With this enhancement in SWAT/SWAT-CUP, the SWAT estimated streamflow values could be used in determining standard flow rate in TMDLs (Total Maximum Daily Load) application at a watershed.

Pharmacokinetic Compartment Modeling을 이용한 나선식 CT에서의 간암-간 대조 곡선의 Simulation (Simulation of lesion-to-liver contrast difference curves in Dynamic Hepatic CT with Pharmacokinetic Compartment Modeling)

  • S.J. Kim;K.H. Lee;J.H. Kim;J.K. Han;B.G. Min
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권2호
    • /
    • pp.173-182
    • /
    • 1999
  • 조영 증강제를 이용한 나선식 CT는 간 질환을 진단하는데 있어 중요한 역할을 하고있음에도 불구하고 진단의 효율을 최적화하는 프로토콜은 명확하게 알려져 있지 않다. 따라서 나선식 CT에서의 간암-간 대조 곡선을 모의 실험(simulation) 하여 다양한 요소들이 시간-조영 곡선에 어떻게 영향을 미치는지 파악하고, 또한 CT 검사 전에 모의 실험을 하여 이론적으로 최적의 스캔을 할 수 있도록 하기 위하여 약동학(pharmacokinetics)에 기초한 compartment model을 구성하였다. 간암, 간, 대동맥 및 간문맥 등을 각 구획(compartment)으로 설정하여 각 구획에서의 미분방정식을 얻은 후 적분하여 Hounsfield unfit 값을 조영제 주입 후 시간의 함수로 얻었으며 각 구획의 시간-조영 곡선을 출력하였다. 구현한 프로그램에서는 간암의 크기 및 종양 혈관의 분포 등과 같은 간암의 성질, 간경화의 정도에 따른 간 혈관 공급의 양상 및 조영제의 부피, 농도, 주입 속도 등의 조영제 주입 방법, 환자의 몸무게, 키 등의 환자의 신체 계수, 그리고 심박출량 등의 환자의 혈역학적 계수 등을 입력 받아 간암을 비롯한 각 구획의 시간-조영 곡선 및 간-간암 대조 곡선을 출력할 수 있도록 하였다. 모델링을 통해 얻은 조영 증강 곡선은 같은 환경하에서 얻은 24명의 환자 데이터와 비교하여 유사한 결과를 얻을 수 있었으며, 조영 증강제 주입 방법의 변화가 간암-간 대조 곡선에 미치는 영향을 비교할 수 있었다.

  • PDF

유한 요소 해석을 이용한 고주파 간 종양 절제술의 입력 파형 최적화를 위한 연구 (A Study For Optimizing Input Waveforms In Radiofrequency Liver Tumor Ablation Using Finite Element Analysis)

  • 임도형;남궁범석;이태우;최진승;탁계래;김한성
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권2호
    • /
    • pp.235-243
    • /
    • 2007
  • Hepatocellular carcinoma is significant worldwide public health problem with an estimated annually mortality of 1,000,000 people. Radiofrequency (RF) ablation is an interventional technique that in recent years has come to be used for treatment of the hepatocellualr carcinoma, by destructing tumor tissues in high temperatures. Numerous studies have been attempted to prove excellence of RF ablation and to improve its efficiency by various methods. However, the attempts are sometimes paradox to advantages of a minimum invasive characteristic and an operative simplicity in RF ablation. The aim of the current study is, therefore, to suggest an improved RF ablation technique by identifying an optimum RF pattern, which is one of important factors capable of controlling the extent of high temperature region in lossless of the advantages of RF ablation. Three-dimensional finite element (FE) model was developed and validated comparing with the results reported by literature. Four representative Rf patterns (sine, square, exponential, and simulated RF waves), which were corresponding to currents fed during simulated RF ablation, were investigated. Following parameters for each RF pattern were analyzed to identify which is the most optimum in eliminating effectively tumor tissues. 1) maximum temperature, 2) a degree of alteration of maximum temperature in a constant time range (30-40 second), 3) a domain of temperature over $47^{\circ}C$ isothermal temperature (IT), and 4) a domain inducing over 63% cell damage. Here, heat transfer characteristics within the tissues were determined by Bioheat Governing Equation. Developed FE model showed 90-95% accuracy approximately in prediction of maximum temperature and domain of interests achieved during RF ablation. Maximum temperatures for sine, square, exponential, and simulated RF waves were $69.0^{\circ}C,\;66.9^{\circ}C,\;65.4^{\circ}C,\;and\;51.8^{\circ}C$, respectively. While the maximum temperatures were decreased in the constant time range, average time intervals for sine, square, exponential, and simulated RE waves were $0.49{\pm}0.14,\;1.00{\pm}0.00,\;1.65{\pm}0.02,\;and\;1.66{\pm}0.02$ seconds, respectively. Average magnitudes of the decreased maximum temperatures in the time range were $0.45{\pm}0.15^{\circ}C$ for sine wave, $1.93{\pm}0.02^{\circ}C$ for square wave, $2.94{\pm}0.05^{\circ}C$ for exponential wave, and $1.53{\pm}0.06^{\circ}C$ for simulated RF wave. Volumes of temperature domain over $47^{\circ}C$ IT for sine, square, exponential, and simulated RF waves were 1480mm3, 1440mm3, 1380mm3, and 395mm3, respectively. Volumes inducing over 63% cell damage for sine, square, exponential, and simulated RF waves were 114mm3, 62mm3, 17mm3, and 0mm3, respectively. These results support that applying sine wave during RF ablation may be generally the most optimum in destructing effectively tumor tissues, compared with other RF patterns.

Carbohydrate-electrolyte drinks exhibit risks for human enamel surface loss

  • de Melo, Mary Anne Sampaio;Passos, Vanara Florencio;Lima, Juliana Paiva Marques;Santiago, Sergio Lima;Rodrigues, Lidiany Karla Azevedo
    • Restorative Dentistry and Endodontics
    • /
    • 제41권4호
    • /
    • pp.246-254
    • /
    • 2016
  • Objectives: The aim of this investigation was to give insights into the impact of carbohydrate-electrolyte drinks on the likely capacity of enamel surface dissolution and the influence of human saliva exposure as a biological protective factor. Materials and Methods: The pH, titratable acidity (TA) to pH 7.0, and buffer capacity (${\beta}$) of common beverages ingested by patients under physical activity were analyzed. Then, we randomly distributed 50 specimens of human enamel into 5 groups. Processed and natural coconut water served as controls for testing three carbohydrate-electrolyte drinks. In all specimens, we measured surface microhardness (Knoop hardness numbers) and enamel loss (profilometry, ${\mu}m$) for baseline and after simulated intake cycling exposure model. We also prepared areas of specimens to be exposed to human saliva overnight prior to the simulated intake cycling exposure. The cycles were performed by alternated immersions in beverages and artificial saliva. ANOVA two-way and Tukey HDS tests were used. Results: The range of pH, TA, and ${\beta}$ were 2.85 - 4.81, 8.33 - 46.66 mM/L and 3.48 - $10.25mM/L{\times}pH$, respectively. The highest capacity of enamel surface dissolution was found for commercially available sports drinks for all variables. Single time human saliva exposure failed to significantly promote protective effect for the acidic attack of beverages. Conclusions: In this study, carbohydrate-electrolyte drinks usually consumed during endurance training may have a greater capacity of dissolution of enamel surface depending on their physicochemical proprieties associated with pH and titratable acidity.

Pilot Scale 김치순간살균장치(瞬間殺菌裝置)에서의 살균효과분석(殺菌效果分析) 및 Simulation (Thermal Process Evaluation and Simulation in a Pilot Scale Kimchi Pasteurizer)

  • 길광훈;김공환;전재근
    • Applied Biological Chemistry
    • /
    • 제27권2호
    • /
    • pp.55-63
    • /
    • 1984
  • Pilot scale 연속식(連速式) 김치순간살균장치(瞬間殺菌裝置)를 사용한 무우김치살균시(殺菌時) 살균효과(殺菌效果)를 분석(分析)하기위해 살균시간(殺菌時間)에 따른 생균수(生菌數)의 변화(變化)를 측정(測定)하였으며 simulation model을 설정(設定)하여 김치내(內) 생균수(生菌數)의 감소(減少)를 예측(豫測)하고 실제 실험치(實驗値)와 비교(比較) 분석(分析)함으로써 simulation model의 적용타당성(適用妥當性)을 검정(檢定)하였다. 1. 김치숙성균(熟成菌)의 D값은 가열온도(加熱溫度) 60, 64, 70, 75, $80^{\circ}C$에서 각각(各各) 2.21, 1.62, 0.73, 0.32, 0.21분(分)이었으며 z값은 $19^{\circ}C$였다. 2. 김치시료(試料)를 4 l/min의 유속(流速)으로 1cycle 살균처리(殺菌處理)하는데 소요(所要)되는 시간(時間)은 0.99분(分)으로 약 1분(分)이 소요(所要)되었다. 3. 총살균효과(總殺菌效果)에서 예열부(豫熱部)에서의 살균효과(殺菌效果)가 차지하는 비율(比率)은 30%, 살균(殺菌) 예냉(豫冷) 냉각부(冷却部)에서의 살균효과(殺菌效果)가 차지하는 비율(比率)은 70%이었다. 4. 살균부(殺菌部)의 온도(溫度)가 65, $70^{\circ}C$일때 관내(管內)를 통과하는 김치액(液)의 시간(時間)에 대한 직선적(直線的) 온도변화(溫度變化)와 지수적(指數的) 온도변화(溫度變化)로부터 유도(誘導)된 두개의 simulation model equation에 의한 예측치(豫測値)와 실제 실험치(實驗値)가 비교적(比較的) 잘 일치(一致)하였다.

  • PDF

KCNQ1 S140G 돌연변이 발현과 심실세동과의 상관관계 분석을 위한 컴퓨터 시뮬레이션 연구 (Correlation Analysis of KCNQ1 S140G Mutation Expression and Ventricular Fibrillation: Computer Simulation Study)

  • 정다운;임기무
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권3호
    • /
    • pp.123-128
    • /
    • 2017
  • Background and aims: The KCNQ1 S140G mutation involved in $I_{ks}$ channel is a typical gene mutation affecting atrial fibrillation. However, despite the possibility that the S140G gene mutation may affect not only atrial but also ventricular action potential shape and ventricular responses, there is a lack of research on the relationship between this mutation and ventricular fibrillation. Therefore, in this study, we analyzed the correlation and the influence of the KCNQ1 S140G mutant gene on ventricular fibrillation through computer simulation studies. Method: This study simulated a 3-dimensional ventricular model of the wild type(WT) and the S140G mutant conditions. It was performed by dividing into normal sinus rhythm simulation and reentrant wave propagation simulation. For the sinus rhythm, a ventricular model with Purkinje fiber was used. For the reentrant propagation simulation, a ventricular model was used to confirm the occurrence of spiral wave using S1-S2 protocol. Results: The result showed that 41% shortening of action potential duration(APD) was observed due to augmented $I_{ks}$ current in S140G mutation group. The shortened APD contributed to reduce wavelength 39% in sinus rhythm simulation. The shortened wavelength in cardiac tissue allowed re-entrant circuits to form and increased the probability of sustaining ventricular fibrillation, while ventricular electrical propagation with normal wavelength(20.8 cm in wild type) are unlikely to initiate re-entry. Conclusion: In conclusion, KCNQ1 S140G mutation can reduce the threshold of the re-entrant wave substrate in ventricular cells, increasing the spatial vulnerability of tissue and the sensitivity of the fibrillation. That is, S140G mutation can induce ventricular fibrillation easily. It means that S140G mutant can increase the risk of arrhythmias such as cardiac arrest due to heart failure.

심혈관 시스템의 압수용체에 의한 심박동 제어의 수학적 모델링 및 시뮬레이션 (Mathematical Modeling and Simulation on the Control of Heart rate by Baroreceptor Control System in the Cardiovascular System)

  • 최병철;이승진;엄상희;남기곤;이영우;전계록
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.80-85
    • /
    • 1996
  • The various function of the cardiovascular system(CVS) and the dynamic characteristics on each part of human body can be acquired in the electric analog circuit model. According to the performed outcome by other researchers, viscos resistance, flow inertia, and vascular compliance in the CVS are analogous to resister, inductor, and capacitor in electric circuit, so the CVS models were represented by the electric circuit models. these approaches were to propose the suitable models interest part of body and to simulate the various characteristics on the CVS. In this paper, the electric circuit model considering the characteristics of morphologic structure is represented, the parameter values of model is sotted up, and the dynamic characteristics of the the CVS is simulated using VisSim, one of the simulation tools. The observed simulation results are similar to the cardiovascular functions of nomal adults who have no heart failure. Besides, the simulation is operated to observe the pathophysiological abnomal symptoms(for example, bleeding within a certain period). The controller by baroreceptor, which is one of controllers to control the CVS, is appended in the model. and the dynamic response characteristics and the procedure to return normal state is observed in simulation when the bleeding last within a certain period.

  • PDF

국가 물환경관리정책 지원을 위한 수질모델링 기술의 발전방향 (Future Development Direction of Water Quality Modeling Technology to Support National Water Environment Management Policy)

  • 정세웅;김성진;박형석;서동일
    • 한국물환경학회지
    • /
    • 제36권6호
    • /
    • pp.621-635
    • /
    • 2020
  • Water quality models are scientific tools that simulate and interpret the relationship between physical, chemical and biological reactions to external pollutant loads in water systems. They are actively used as a key technology in environmental water management. With recent advances in computational power, water quality modeling technology has evolved into a coupled three-dimensional modeling of hydrodynamics, water quality, and ecological inputs. However, there is uncertainty in the simulated results due to the increasing model complexity, knowledge gaps in simulating complex aquatic ecosystem, and the distrust of stakeholders due to nontransparent modeling processes. These issues have become difficult obstacles for the practical use of water quality models in the water management decision process. The objectives of this paper were to review the theoretical background, needs, and development status of water quality modeling technology. Additionally, we present the potential future directions of water quality modeling technology as a scientific tool for national environmental water management. The main development directions can be summarized as follows: quantification of parameter sensitivities and model uncertainty, acquisition and use of high frequency and high resolution data based on IoT sensor technology, conjunctive use of mechanistic models and data-driven models, and securing transparency in the water quality modeling process. These advances in the field of water quality modeling warrant joint research with modeling experts, statisticians, and ecologists, combined with active communication between policy makers and stakeholders.

ITE 타입의 소음 차폐기용 소형 음향 필터의 설계 (Design of Small Acoustic Filter for ITE Type Noise Protector)

  • 이윤정;김필운;장용민;이상흔;조진호;김명남
    • 센서학회지
    • /
    • 제13권6호
    • /
    • pp.479-487
    • /
    • 2004
  • The prevention of noise induced hearing loss is very important, because there is no treatment for it. There are some kinds of devices for hearing protection, and those are effective in preventing a noise induced hearing loss. However, people often resist the use of hearing protection devices because it is difficult to have a conversation. Therefore, a hearing protection device is must effective not only in hearing protection but also in preserving communication ability. In this paper, we proposed a small acoustic filter for ITE type noise protector to solving the problem about the difficulties of conversation. That is applied a principle of acoustic filters that have been used for a muffler of automobiles, guns, and etc. To find out the sound transmission characteristic at the eardrum, we regarded an acoustic filter and external ear canal as a coupled system. So, we simulated the coupled system with OrCad, and experimented with a designed acoustic filter and a 2 cc coupler which has the same transmission characteristic as the external ear canal has. We confirmed that it is possible to adjustment acoustic transmission characteristics through simulation of electrical model for acoustic filter and external ear and experiments using designed small acoustic filters.