• Title/Summary/Keyword: Simulated Vehicle

Search Result 522, Processing Time 0.025 seconds

Power Aware Routing Protocol in Multimedia Ad-hoc Network Considering Hop Lifetime of Node

  • Huh, Jun-Ho;Kim, Yoondo;Seo, Kyungryong
    • Journal of Multimedia Information System
    • /
    • v.1 no.2
    • /
    • pp.101-110
    • /
    • 2014
  • The purpose of this research is to extend Ad-hoc network system lifetime with the proposed routing protocol which has considered hop lifetimes of the nodes while guaranteeing QoS in the establishment process of Ad-hoc network communication paths. Based on another power aware routing system that proposed in the advanced research [1], we are proposing an alternative power aware routing system in which nodes' hop lifetimes are compared in order to extend the lifetime of an Ad-hoc network system and delay factors have been considered for the assurance of QoS. The research of the routing protocol in this paper, which aims to maximize the system survival time considering power consumption status during the path searching in MANET and pursues the mechanism that controls hop delays for the same reason, can be applied to the study of WSN. The study concerning such phenomena is essential so that the proposed protocol has been simulated and verified with NS-2 in Linux system focusing on the lifetimes of the hops of the nodes. Commercialization of smart devices and arrival of the ubiquitous age has brought about the world where all the people and things are connected with networks. Since the proposed power aware method and the hop delay control mechanism used to find the adequate communication paths in MANET which mainly uses batteries or in WSN, they can largely contribute to the lifetime extension of the network system by reducing power consumptions when utilized for the communications attempts among soldiers during military operation, disaster areas, temporary events or exhibitions, mobile phone shadow areas, home networks, in-between vehicle communications and sense networks, etc. This paper presents the definitions and some advantages regarding the proposed outing protocol that sustain and extend the lifetime of the networks.

  • PDF

Development of a Comprehensive Performance Test Facility for Small Millimeter-wave Tracking Radar (소형 추적 레이다용 종합성능시험 시설 개발)

  • Kim, Hong-Rak;Kim, Youn-Jin;Woo, Seon-Keol;An, Se-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.121-127
    • /
    • 2020
  • The small tracking radar targets the target in a real-time, fast-moving, fast-moving target against aircraft with a large RCS that is maneuvering at low speed and a small RCS aircraft maneuvering at high speed (fighters, drones, helicopters, etc.) It is a pulsed radar that detects and tracks. Performing a performance test on a tracking radar in a real environment is expensive, and it is difficult to quantitatively measure performance in a real environment. Describes the composition of the laboratory environment's comprehensive performance test facility and the main requirements and implementation of each configuration.Anechoic chambers to simulate the room environment, simulation target generator to simulate the signal of the room target, target It is composed of a horn antenna driving device to simulate the movement of a vehicle and a Flight Motion Simulatior (FMS) to simulate the flight environment of a tracking radar, and each design and implementation has been described.

Cooling of Cryogenic Liquids by Gas Helium Injection (I) (가스분사에 의한 극저온 액체의 냉각에 관한 연구 (I))

  • Song, Yi-Hwa;Choi, Young-Hwan;Kim, Yoo;Chung, Yong-Gahp;Cho, Nam-Kyung;Jeong, Sang-Kwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.141-144
    • /
    • 2003
  • In this paper, to satisfy the temperature requirement of turbopump-inlet condition, the cooling of cryogenic propellant is performed at the simulated suction-line of the Launch Vehicle. The cooling method is by using Gas helium injection. This study investigates the effect of helium injection on the liquid nitrogen which simulates the liquid oxygen. By using helium injection, the subcooling of liquid nitrogen can be achieved within four minute when the ratio of gas volume flowrate to the volume of L$N_2$ is approximately v/v$_{L}$≒0.8min$^{-1}$ . .

  • PDF

Characteristics of Silane Treated Graphene Filled Nanocomposites Exposed to Low Earth Orbit Space Environment (저궤도 우주환경하의 실란처리된 그래핀 첨가 나노 복합재료의 물성특성)

  • Noh, Jae-Young;Jin, Seung-Bo;Kim, Chun-Gon
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.130-135
    • /
    • 2015
  • This study investigates the property of graphene filled polymer nanocomposites in LEO(Low Earth orbit) environment conditions. In order to improve compatibility with polymer matrices and resistance of carbon material against AO(Atomic oxygen) attack, silanization of graphene oxide with organosilane was carried out. The corresponding moieties were characterized through X-ray photoelectron spectroscopy (XPS). Graphene oxide filled nanocomposites were prepared using solution based processing methods. The sets of specimen series were tested in an accelerated LEO simulated space environment facility. Graphene oxide and silane treated graphene oxide reinforced nanocomposites were compared with neat epoxy. The comparison revealed that the silane treated graphene filled polymer composite shows inherent resistance against atomic oxygen attack while the lack of silane treatment resulted in a reduction in performance.

Study on Development of the Left-Turn Actuated Signal Control Method (좌회전 감응신호제어방법 개발에 관한 연구)

  • Kim, Soo-Hee;Oh, Young-Tae;Lee, Choul-Ki;Lee, Hwan-Pil;Choi, Jin-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.9-15
    • /
    • 2011
  • The left-turn actuated signal control method has been occurred various problems under the COSMOS. one of problems is a early termination for left-turn phase by u-turn vehicles at left-turn lane. Therefore, the purpose of this study is a development of the efficient left-turn actuated signal control method to improve the problem. This study was considered that setback the left-turn vehicle detector to the start point of u-turn line and adjustment of the passage time. For effective analysis of developed method, Traffic simulation was simulated by T-7F and VISSIM under various traffic conditions. The result was proved that the developed Method improved the effectiveness.

Obstacle Avoidance for Unmanned Air Vehicles Using Monocular-SLAM with Chain-Based Path Planning in GPS Denied Environments

  • Bharadwaja, Yathirajam;Vaitheeswaran, S.M;Ananda, C.M
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • Detecting obstacles and generating a suitable path to avoid obstacles in real time is a prime mission requirement for UAVs. In areas, close to buildings and people, detecting obstacles in the path and estimating its own position (egomotion) in GPS degraded/denied environments are usually addressed with vision-based Simultaneous Localization and Mapping (SLAM) techniques. This presents possibilities and challenges for the feasible path generation with constraints of vehicle dynamics in the configuration space. In this paper, a near real-time feasible path is shown to be generated in the ORB-SLAM framework using a chain-based path planning approach in a force field with dynamic constraints on path length and minimum turn radius. The chain-based path plan approach generates a set of nodes which moves in a force field that permits modifications of path rapidly in real time as the reward function changes. This is different from the usual approach of generating potentials in the entire search space around UAV, instead a set of connected waypoints in a simulated chain. The popular ORB-SLAM, suited for real time approach is used for building the map of the environment and UAV position and the UAV path is then generated continuously in the shortest time to navigate to the goal position. The principal contribution are (a) Chain-based path planning approach with built in obstacle avoidance in conjunction with ORB-SLAM for the first time, (b) Generation of path with minimum overheads and (c) Implementation in near real time.

Inflow Noise Characteristics of the Sensor in Low Wave Number Region Using Transfer Function (전달함수를 이용한 저파수 영역에서의 센서 유입 소음 특성 연구)

  • Park, Ji-hye;Lee, Jongkil;Shin, Ku-kyun;Cho, Chi-yong
    • 대한공업교육학회지
    • /
    • v.34 no.1
    • /
    • pp.238-251
    • /
    • 2009
  • The noise itself that affects the sensor array is defined as the noise which happens in the place where the system is installed and the circumference noise which comes from the ocean. The array structure for detecting acoustic signal in the underwater effected turbulent layer flow noise. In this paper to design the conformal array spectral density function was introduced and several cases of flow induced noise which affect transfer function were simulated. Modified Corcos wall pressure model was used as turbulent boundary layer flow noise. The effect of noise has been reduced as integrated sum of transfer function has been reduced by decreasing elastomer thickness and density when kx is in low wave number area. Also the characteristics of transfer function by Corcos wall pressure displayed the product of frequency density function. This simulation results can be applied to the conformal array design in unmmaned underwater vehicle in the near future.

An experimental study on development of water mist fire-fighting systems for Ro-Ro spaces (Ro-Ro 구역용 미분무 소화설비의 개발을 위한 실험적 연구)

  • Kwark, Ji-Hyun;Kim, Young-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.946-952
    • /
    • 2013
  • Large scale fire tests were conducted to develop water mist nozzles as a component of fixed water- based fire fighting systems for Ro-Ro spaces and special category spaces. Fire scenarios for this system consist of two cases which are for cargo fire in a simulated truck and for passenger vehicle fire, and each case has 3 different tests according to the position between fixed water mist nozzles and fire source. Every experiment proceeded for 30 minutes and acceptance criteria were based on gas temperature, fuel package's damage and ignition of targets. This study primarily dealt with the experimental results of cargo fire and focused on fire suppression capability in accordance with discharge pressure, flow rate and flow characteristics like swirl and penetration of the developed water mist nozzles. It appeared that low pressure water mist nozzles with about 40 L/min were able to control fire occurred in Ro-Ro spaces.

Evaluation of Thermal Fatigue Lifetimes of Cast Iron Brake Disc Materials (제동 디스크용 주철의 물성 및 열피로 특성평가)

  • Goo, Byeong-Choon;Lim, Choong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.835-841
    • /
    • 2012
  • We measured the mechanical and thermal properties of four types of cast irons used for manufacturing the brake discs of railway vehicles. It was found that these properties could be controlled by varying the composition of Ni, Cr, and Mo. Thermal fatigue tests were carried out by using a thermal fatigue tester in which thermal cycles could be controlled. Thermal crack initiation and propagation were measured on cylindrical specimens. Finally, we simulated the thermal fatigue test procedure by finite element analysis and calculated the thermal fatigue lifetimes by Manson-Coffin's equation and the maximum principal strain. The estimated thermal fatigue lifetimes corresponded to the measured lifetimes when the total crack length was $40{\mu}m{\sim}1mm$.

Virtual Prototyping of Automated System for Adjustable Row Spacing of Hydroponic Gullies in Multilayer Plant Factory

  • Ashtiani-Araghi, Alireza;Lee, Chungu;Cho, Seong-In;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.35-46
    • /
    • 2015
  • Purpose: To present a flexible and accurate autonomous solution for creating any desired row spacing value between the hydroponic gullies in multilayer growing units, and evaluate the capabilities and performance of the relevant automated system through the use of virtual prototyping technique. Methods: To build the virtual prototype of the system, CAD models of its different parts, including an autonomous vehicle and the mechanical mechanisms embedded in the multilayer growing unit, were developed and imported into the RecurDyn simulation software. In order to implement the automated row spacing operation, three spacing modes with different loading cycles and working steps were defined, and the operation of the system was simulated to obtain the target row spacing values specified for each of these modes. Results: Motion profiles related to the horizontal displacement of: 1) the lower and upper sliding bars installed in the cultivation layers, and 2) the hydroponic gullies, during the simulation of the system operation, were generated and analyzed. No deviation from the specified target spacing values was observed at the end of simulations for all spacing modes. Conclusions: The results of the motion analysis obtained by simulating the system operation confirm the effectiveness of the control scheme proposed for automated row spacing of gullies. It was also found that proper sequencing of the loading cycles and the precision of the working strokes of the upper bars are the critical factors for establishing a certain row spacing value. Based on the simulation results, precise control of the back and forth motions of the upper bars is highly necessary for sound operation of the real system.