• Title/Summary/Keyword: Simulated Rhythm

Search Result 13, Processing Time 0.022 seconds

Partial Principal Component Elimination Method and Extended Temporal Decorrelation Method for the Exclusion of Spontaneous Neuromagnetic Fields in the Multichannel SQUID Magnetoencephalography

  • Kim, Kiwoon;Lee, Yong-Ho;Hyukchan Kwon;Kim, Jin-Mok;Kang, Chan-Seok;Kim, In-Seon;Park, Yong-Ki
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.114-120
    • /
    • 2003
  • We employed a method eliminating a temporally partial principal component (PC) of multichannel-recorded neuromagnetic fields for excluding spatially correlated noises from event-evoked signals. The noises in magnetoencephalography (MEG) are considered to be mainly spontaneous neuromagnetic fields which are spatially correlated. In conventional MEG experiments, the amplitude of the spontaneous neuromagnetic field is much lager than that of the evoked signal and the synchronized characteristics of the correlated rhythmic noise makes it possible for us to extract the correlation noises from the evoked signal by means of the general PC analysis. However, the whole-time PC of the fields still contains a little projection component of the evoked signal and the elimination of the PC results in the distortion of the evoked signal. Especially, the distortion will not be negligible when the amplitude of the evoked signal is relatively large or when the evoked signals have a spatially-asymmetrical distribution which does not cancel out the corresponding elements of the covariance matrix. In the period of prestimulus, there are only the spontaneous fields and we can find the pure noise PC that is not including the evoked signal. Besides that, we propose a method, called the extended temporal decorrelation method (ETDM), to suppress the distortion of the noise PC from remanent evoked signal components. In this study, we applied the Partial Principal component elimination method (PPCE) and ETDM to simulated signals and the auditory evoked signals that had been obtained with our homemade 37-channel magnetometer-based SQUID system. We demonstrate here that PPCE and ETDM reduce the number of epochs required in averaging to about half of that required in conventional averaging.

  • PDF

Modeling and Estimation of Cardiac Conduction System using Hidden Markov Model (HMM을 이용한 심장 전도 시스템의 모델화와 추정)

  • Halm, Zee-Hun;Park, Kwang-Suk
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.222-227
    • /
    • 1997
  • To diagnose cardiac arrhythmia owing to reentry mechanism, cardiac conduction system was modeled by modified Hidden Markov modeled by evaluated. First, simulation of transient conduction states and output waves were made with initially assumed parametric values of cardiac muscle repolariztion time, conduction velocity and its automaticity. The output was a series of onset time and the name of the wave. Parameters determined the rate of beating, lengths of wave intervals, rate of abnormal beats, and the like. Several parameter sets were found to simulate normal sinus rhythm, supraventricular /ventricular tachycardia, atrial /vetricular extrasystole, etc. Then, utilizing the estimation theorems of Hidden Markov Model, the best conduction path was estimated given the previous output. With this modified estimation method, close matching between the simulated conduction path and the estimated one was confirmed.

  • PDF

Effect of Bright Light Exposure on Adaptation to Rapid Night Shift : A Field Study of Shift Work Nurses in Psychiatric Ward (순환제교대근무자에서 야간 근무 적응에 대한 광치료 효과)

  • Ko, Young-Hoon;Joe, Sook-Haeng
    • Sleep Medicine and Psychophysiology
    • /
    • v.9 no.1
    • /
    • pp.41-47
    • /
    • 2002
  • Objectives: In a number of simulated night shift studies, timed exposure to bright light improves sleep quality and work performance. We evaluated the effect of bright light on adaptation to night shift work with a field study. Methods: Five female nurses working shifts at Korea University Hospital were recruited for participation in this study. We investigated two series of six consecutive shift rotations comprising three day and three night shifts, using wrist Actigraphy, the Stanford Sleepiness Scale, Visual-analogue scales, STIM and tympanic membrane temperature for daytime sleep quality, alertness, subjective feeling, attention performance, and temperature rhythm. The subjects were exposed to bright light (2,500 lux) from 24:00 to 04:00 a.m. on three consecutive night shifts during the second series, whereas they worked under normal lightening (650 lux) conditions during the first series. Results: Actigraphic assessment of daytime sleep showed no significant difference between the first and third night shift in both baseline and light exposure phase. The mean lowest temperature shifted earlier during baseline phase but not during the light exposure phase. Also, the score for subjective feelings of depression, anxiety, physical discomfort and sleepiness was significantly higher in the third night shift than the first during baseline phase but not during the light exposure phase. Attention and attention switching ability was significantly improved in the third night shift compared to the first night during the light exposure phase but there were no significant changes during the baseline phase. Conclusion: This result suggests that there were no significant differences between the two phases in measures of quality of daytime sleep, but subjective feelings, attention and alertness were enhanced during light exposure. Although some placebo effects and learning effects might influence this result, bright light exposure between midnight and 4:00 a.m. may improve adaptation to night shift. In future, further controlled studies with a larger sample size, including melatonin measurement, are needed for real shift workers.

  • PDF