• Title/Summary/Keyword: Simulated Moving Bed Reactor

Search Result 2, Processing Time 0.024 seconds

Principles of Simulated Moving Bed Reactor(SMBR) (Simulated Moving Bed Reactor(SMBR)의 원리)

  • Song, Jae-Ryong;Kim, Jin-Il;Koo, Yoon-Mo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.129-136
    • /
    • 2011
  • Simulated Moving Bed(SMB) process consists of multiple chromatographic columns, which are usually partitioned into four zones. Such a process characteristic allows a continuous binary separations those are impracticable in conventional batch chromatographic processes. Compared with batch chromatography, SMB has advantages of continuity, high purity and productivity. Various researches have been reported for the integration of reaction and recovery during process operation on the purpose of economics and effectiveness. Simulated Moving Bed Reactor(SMBR) is introduced to combine SMB as a continuous separation process and reactor. Several cases of SMBR have been reported for diverse reactions with catalytic, enzymatic and chemical reaction on ion exchange resin as main streams. With an early type of fixed bed using catalyst, SMBR has been developed as SMB using fluidized enzyme, SMB with immobilized enzyme and SMB with discrete reaction region. For simple modeling and optimization of SMBR, a method considering convection only is possible. A complex method considering axial dispersion and mass transfer resistance is needed to explain the real behavior of solutes in SMBR. By combining reaction and separation, SMBR has benefits of lower installation cost by minimizing equipment use, higher purity and yield by avoiding the equilibrium restriction in case of reversible reaction.

A Study on $SO_2$ Adsorption Characteristics by NMO in a Moving Bed Reactor (NMO를 이용한 이동층반응기에서의 $SO_2$ 흡착특성에 관하 연구)

  • 조기철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.399-408
    • /
    • 2000
  • This study evaluated the SO2 adsorption characteristics using a continous moving bed system. Natural manganese oxide (NMO) reaction condition such as L/D the starting time of the NMO feed, feed rate, and flow rate of simulated flue gas, and NMO size were tested. The results showed that optimum L/D was 1.0 in this moving bed system. The higher the feeding rate was the higher the SO2 removal efficiency was and the higher the flow rate of simulated flue gas was the shorter the time to reach the euqilibirum concentration was. The final SO2 con-centration when it reaches the equilibrium concentration was not affected by the starting time of the NMO feed.

  • PDF