In a classical clustering problem, grouping is done on the basis of similarities or distances (dissimilarities) among the elements. Therefore, the objective is to minimize the variance within each group while maximizing the between-group variance among all groups. In this paper, however, a new class of clustering problem is introduced. We call this a laydown grouping problem (LGP). In LGP, the objective is to minimize both the within-group and between-group variances. Furthermore, the problem is expanded to a multi-dimensional case where the two-way minimization process must be considered for each dimension simultaneously for all measurement characteristics. At first, the problem is assessed by analyzing its variance structures and their complexities by conjecturing that LGP is NP-complete. Then, the simulated annealing (SA) algorithm is applied and the results are compared against that from others.
In this paper, we consider the Location-Routing Problem with simultaneous pickup and delivery (LRPSPD) which is a general case of the location-routing problem. The LRPSPD is defined as finding locations of the depots and designing vehicle routes in such a way that pickup and delivery demands of each customer must be performed with same vehicle and the overall cost is minimized. Since the LRPSPD is an NP-hard problem, we propose a hybrid heuristic approach based on genetic algorithms (GA) and simulated annealing (SA) to solve the problem. To evaluate the performance of the proposed approach, we conduct an experimental study and compare its results with those obtained by a branch-and-cut algorithm on a set of instances derived from the literature. Computational results indicate that the proposed hybrid algorithm is able to find optimal or very good quality solutions in a reasonable computation time.
The nesting of two-dimensional patterns onto a given raw sheet has applications in a number industries. It is a common problem often faced by designers in the shipbuilding, garment making, blanking die design, glass and wood industries. This paper presents a multi-stage layout approach for nesting two-dimensional patterns by using artificial intelligence techniques with a relatively short computation time. The raw material with irregular boundaries and internal defects which must be considered in various cases of nesting was also investigated in this study. The proposed nesting approach consists of two stages : initial layout stage and layout improvement stage. The initial layout configuration is achieved by the self-organizing assisted layout(SOAL) algorithm while in the layout improvement stage, the simulated annealing(SA) is adopted for a finer optimization.
Flow shop scheduling problem involves processing several jobs on common facilities where a setup time Is incurred whenever there is a switch of jobs. Practical aspect of scheduling focuses on finding a near-optimum solution within a feasible time rather than striving for a global optimum. In this paper, a hybrid meta-heuristic method called tabu-genetic algorithm(TGA) is suggested, which combines the genetic algorithm(GA) with tabu list. The experiment shows that the proposed TGA can reach the optimum solution with higher probability than GA or SA(Simulated Annealing) in less time than TS(Tabu Search). It also shows that consideration of setup time becomes more important as the ratio of setup time to processing time increases.
This study is concerned with suggesting a new clustering algorithm to evaluate the value of papers which were supported by research grants by Korea Research Fund (KRF). The algorithm is based on an extended version of a conventional PSO (Particle Swarm Optimization) mechanism. In other words, the proposed algorithm is based on integration of k-means algorithm and simulated annealing mechanism, named KASA-PSO. To evaluate the robustness of KASA-PSO, its clustering results are evaluated by research grants experts working at KRF. Empirical results revealed that the proposed KASA-PSO clustering method shows improved results than conventional clustering method.
In the printer and the facsimile communication, digital halftoning is extremely important technologies. Error diffusion method is applied easy for color image halftoning. But the problem in error diffusion method is that a quite unrelated color has been generated though it is necessary to express the area of the grayscale in the black and white when the image that there is an area of the grayscale on a part of the color image is processed. The halftoning was assumed to be a combinational optimization problem to solve this problem, and the method of using SA (Simulated Annealing) was proposed. However, new problem existed because the processing time was a great amount compared with error diffusion method. Then, we propose the new error diffusion method.
This paper deals with a centralized warehouse problem with multi-item and capacity constraint. The objective of this paper is to decide the number and location of centralized warehouses and determineorder quantity (Q), reorder point (r) of each centralized warehouse to minimize holding, setup, penalty, and transportation costs. Each centralized warehouse uses continuous review inventory policy and its budget is limited. A SA (Simulated Annealing) approach is developed and its performance is tested by using some computational experiments.
최적 노심장전모형을 찾기 위한 확률론적 방법중 하나인 Simulated Annealing 방법은 기존 결정론적 방법의 단점인 국부 최적해에 빠질 위험성을 줄이면서도 빠른 시간 안에 최적 노심장전 모형을 찾을 수 있다. 그러나 많은 장전모형의 핵특성을 계산하기 위해서는 많은 전산시간이 소요되기 때문에 이의 해결 방법으로 신경망이론 이용한 노심해석을 통하여 시간을 극소화하고, 기존의 섭동이론 등 가속화된 방법에 비해 정확도를 높였다. 영광 3호기 평형노심에 적용한 결과 기존 설계된 장전모형에 비하에 더 보수적인 제한치를 만족하면서도 주기길이가 33EFPD 만큼 길어지는 장전모형을 1시간 이내에 찾을 수 있어 기존의 결정론적 방법이나 다른 핵특성 계산 모델을 사용한 SA법에 비해 더 적은 전산시간 동안 정확한 최적해를 탐색하는 것을 확인하였다.
This paper discusses on application of meta-heuristic algorithms such as the genetic algorithm (GA) and the simulated annealing (SA) to the LSI module placement. We propose useful crossover method for improving of searching capability in genetic algorithm. By using our proposed crossover method, we have been able to keep good schemata in the chromosome and the variety of the solution. From the experimental results, we have obtained better result than the simulated annealing method by starting from the initial placement of the min-cut method.
단지 조성을 위한 토공사는 대상 부지의 지형고를 계획고와 맞추기 위한 대규모 토량이동으로 이루어지는 공사로 전체 공사비에 20~30%를 차지하는 중요한 공정이다. 한편 토공사는 주로 적재-운반-하차-복귀의 단순 작업사이클로 구성되어 있어 계획의 품질은 공기와 비용에 매우 큰 영향을 끼친다. 본 연구에서는 대규모 단지 조성 공사에서 토공 운반거리를 최소화할 수 있는 토량구획 모델을 제시하였다. 본 모델은 구획 알고리즘과 simulated Annealing 알고리즘에 기반하고 있으며, 이러한 알고리즘은 국부해에 빠질 수 있는 현행 토공구획 방법을 개선하기 위하여 도입되었다. 제시된 모델의 적용성을 평가하기 위하여 실제 단지공사 토량이동도를 대상으로 시뮬레이션을 실시한 결과 약 14%의 개선효과를 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.