• Title/Summary/Keyword: Simplified assessment model

Search Result 95, Processing Time 0.032 seconds

A Conservative Safety Study on Low-Level Radioactive Waste Repository Using Radionuclide Release Source Term Model (선원항 모델을 사용한 저준위 방사성폐기물 처분장의 보수적인 안전성고찰)

  • Kim, Chang-Lak;Lee, Myung-Chan;Cho, Chan-Hee
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 1993
  • A simplified safety assessment is carried out on rock-cavern type disposal of LLW using the analytical repository source term (REPS) model. For reliable prediction of the leach rates for various radionuclides, degradation of concrete structures, corrosion rate of waste container, degree of corrosion on the container surface, and the characteristics of radionuclides are considered in the REPS model. The results of preliminary assessment show that Cs-137, Ni-63, and Sr-90 are dominant. For the parametric uncertainty and sensitivity analysis, Latin hypercube sampling technique and rank correlation technique are applied. The results of the potential public health impacts show that radiological dose to intruder in the worst case scenario will be negligible and that more attention should be given to near-field performance.

  • PDF

Assessment of speckle image through particle size and image sharpness

  • Qian, Boxing;Liang, Jin;Gong, Chunyuan
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.659-668
    • /
    • 2019
  • In digital image correlation, speckle image is closely related to the measurement accuracy. A practical global evaluation criterion for speckle image is presented. Firstly, based on the essential factors of the texture image, both the average particle size and image sharpness are used for the assessment of speckle image. The former is calculated by a simplified auto-covariance function and Gaussian fitting, and the latter by focusing function. Secondly, the computation of the average particle size and image sharpness is verified by numerical simulation. The influence of these two evaluation parameters on mean deviation and standard deviation is discussed. Then, a physical model from speckle projection to image acquisition is established. The two evaluation parameters can be mapped to the physical devices, which demonstrate that the proposed evaluation method is reasonable. Finally, the engineering application of the evaluation method is pointed out.

Parametric Study for Assessment of Reaction Forces on Ship Docking Supports

  • Ryu, Cheol-Ho;Kim, Sung-Chan;Lee, Jang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.3
    • /
    • pp.290-301
    • /
    • 2013
  • The docking analysis of a global ship structure is requested to evaluate its structural safety against the reaction forces at supports during docking works inside a dry dock. That problem becomes more important recently as the size of ships is getting larger and larger. The docking supports are appropriately arranged in a dock to avoid their excessive reaction forces which primarily cause the structural damages in docking a ship and, up to now, the structural safety has been assessed against the support arrangement by the finite element analysis (FEA) of a global ship structure. However, it is complicated to establish the finite element model of the ship in the current structural design environment of a shipyard and it takes over a month to finish the work. This paper investigates a simple and fast approach to carry out a ship docking analysis by a simplified grillage model and to assign the docking supports position on the model. The grillage analysis was considered from the motivation that only the reaction forces at supports are sufficient to assess their arrangement. Since the simplified grillage model of the ship cannot guarantee its accuracy quantitatively, modeling strategies are proposed to improve the accuracy. In this paper, comparisons between the proposed approach and three-dimensional FEA for typical types of ships show that the results from the present grillage model have reasonably good agreement with the FEA model. Finally, an integrated program developed for docking supports planning and its evaluation by the proposed approach is briefly described.

Technical Standards on the Safety Assessment of a HLW Repository in Other Countries (고준위폐기물 처분장 안전성평가 관련 타 국가의 기술기준)

  • Lee, Sung-Ho;Hwang, Yong-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.3
    • /
    • pp.183-190
    • /
    • 2009
  • The basic function of HLW disposal system is to prevent excessive radio-nuclides being leaked from the repository in a short time. To do this, many technical standards should be developed and established on the components of disposal system. Safety assessment of a repository is considered as one of technical standards, because it produces quantitative results of the future evolution of a repository based on a reasonably simplified model. In this paper, we investigated other countries' regulations related to safely assessment focused on the assessment period, radiation dose limits and uncertainties of the assessment. Especially, in the investigation process of the USA regulations, the USA regulatory bodies' approach to assessment period and peak dose is worth taking into account in case of a conflict between peak dose from safety assessment and limited value in regulation.

  • PDF

Simplified robustness assessment of steel framed structures under fire-induced column failure

  • Jiang, Binhui;Li, Guo-Qiang;Yam, Michael C.H.
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.199-213
    • /
    • 2020
  • This paper proposes a Global-Local Analysis Method (GLAM) to assess the progressive collapse of steel framed structures under fire-induced column failure. GLAM obtains the overall structural response by combining dynamic analysis of the heated column (local) with static analysis of the overall structure (global). Test results of two steel frames which explicitly consider the dynamic effect during fire-induced column failure were employed to validate the proposed GLAM. Results show that GLAM gives reasonable predictions to the test frames in terms of both whether to collapse and the displacement verse temperature curves. Besides, several case studies of a two-dimensional (2D) steel frame and a three-dimensional (3D) steel frame with concrete slabs were conducted by using GLAM. Results show that GLAM gives the same collapse predictions to the studied cases with nonlinear dynamic analysis of the whole structure model. Compared with nonlinear dynamic analysis of the whole structure model, GLAM saves approximately 70% and 99% CPU time for the cases of 2D and 3D steel frame, respectively. Results also show that the load level of a structure has notable effects on the restraint condition of a heated column in the structure.

Development of Model to Evaluate Thermal Fluid Flow Around a Submerged Transportation Cask of Spent Nuclear Fuel in the Deep Sea

  • Guhyeon Jeong;Sungyeon Kim;Sanghoon Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.411-428
    • /
    • 2022
  • Given the domestic situation, all nuclear power plants are located at the seaside, where interim storage sites are also likely to be located and maritime transportation is considered inevitable. Currently, Korea does not have an independently developed maritime transportation risk assessment code, and no research has been conducted to evaluate the release rate of radioactive waste from a submerged transportation cask in the sea. Therefore, secure technology is necessary to assess the impact of immersion accidents and establish a regulatory framework to assess, mitigate, and prevent maritime transportation accidents causing serious radiological consequences. The flow rate through a gap in a containment boundary should be calculated to determine the accurate release rate of radionuclides. The fluid flow through the micro-scale gap can be evaluated by combining the flow inside and outside the transportation cask. In this study, detailed computational fluid dynamic and simplified models are constructed to evaluate the internal flow in a transportation cask and to capture the flow and heat transfer around the transportation cask in the sea, respectively. In the future, fluid flow through the gap will be evaluated by coupling the models developed in this study.

Performance Assessment of Engineered Barrier for Retardation of Radionuclide Release in a Low- and Intermediate-Level Radioactive Waste Repository (중저준위방사성폐기물 처분장 인공방벽의 핵종유출 저지능 평가)

  • Cho, W.J.;Lee, J.O.;Hahn, P.S.;Park, H.H.
    • Nuclear Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.447-456
    • /
    • 1993
  • A simplified model to assess the performance of engineered barrier for the retardation of radionuclide release in a low- and intermediate-level radioactive waste repository was developed. The model is based on the repository design concept being suggested in Korea, and considers two types of release scenario ; a design-bas release for the design of engineered barrier and a realistic release for the performance assessment. For the numerical illustration, the sample calculations were performed for five radionuclides with different chemical characteristics, and the results were analyzed.

  • PDF

A Preliminary Study for Quantifying Appearance Assessment of Assembly Seam Gaps - Case Study of Drawer Assembly (조립품 심(seam)의 갭(gap)에 대한 정량적 심미평가의 기초연구 - 서랍장을 대상으로 한 사례연구)

  • Lee, Hae-Seung;Lee, Rae-Woo;Yim, Hyun-June
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.5
    • /
    • pp.380-389
    • /
    • 2011
  • Esthetic appeal of a product is often affected by the appearance quality of seams forming between components of the product. The appearance quality of seams is, however, assessed in a very subjective and qualitative manner that heavily depends on the evaluator. This paper presents a preliminary study to quantify such assessment by formulating a quantitative index which is a linear function of the seam gap sizes, seam gap ranges, and the size uniformity of seam gaps. By considering a highly simplified problem of a drawer system and utilizing subjective assessments by twenty evaluators, the index has been formulated. The validity of this index has been confirmed by observing its behavior with changes of the component tolerances. Also, the utility of this index has been demonstrated through a selective assembly scheme applied to the drawer system problem. Though the index formulated in this study for seam appearance quality may be useful, future studies are necessary to make the model readily applicable to real problems.

Damping System Design for Apartment Buildings Using Equivalent Frame Model (등가프레임모델을 이용한 공동주택의 감쇠시스템 설계)

  • Kim, Jong-Ho;Lee, Myoung-Kyu;Chun, Young-Soo;Lee, Dong-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.351-360
    • /
    • 2014
  • The purpose of this research is to introduce the simplified equivalent frame model for the equivalent lateral force procedure, the response spectrum procedure and nonlinear procedure according to ASCE7-10 in order to reduce the time of performance and reasonably evaluate the effect of applying the damping system with the various conditions for the analysis and the variable. In this research, the seismic performance assessment and the design of the damping system were conducted through the nonlinear time history analysis based on the performance based seismic design in ASCE7-10 in regard to applying the damping system to apartment buildings which is lately issued. The optimal design based on the 75% of seismic base shear was performed for an apartment building. The seismic performance assessment were conducted to check the safety of the building, and the economic evaluation was performed by comparing the amount of resource for the optimal designed building with the amount of resource for the original building. In addition, hysteresis dampers was applied to the apartment building, and the suggested equivalent frame model was performed using the damping system design in ASCE7-10, then its control effects were proved in the full scale model of the apartment building which was used in this research.

Study on Safety Evaluation Process for Hydrogen Storage System of Hydrogen Bus (수소버스 수소저장용기의 측면충돌 안전성 평가방법 연구)

  • Kyungjin, Kim;Jaeho, Shin;Kyeonghee, Han;Hyeon Min, Han;Jeong Min, In;Siwoo, Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.113-119
    • /
    • 2022
  • The structural safety of hydrogen buses is being evaluated for the successful introduction of hydrogen buses. The crash test methodology, for example, side impact test procedure is being discussed for hydrogen bus structure safety with a compressed hydrogen storage system located under the bus floor. Thus this study describes a new experiment method for side impact test with compressed hydrogen storage system independently based on finite element analysis instead of side impact test using full hydrogen bus. A side crash procedure of conceptual compressed hydrogen storage structure was investigated and impact simulations were performed. The finite element models of hydrogen bus, simplified structures, fuel tank system and side impact moving barrier were set up and simulation results reported model performance and result comparison of three different simplified models. Computational results and research discussion proposed the fundamental test framework for safety assessment of the compressed hydrogen storage system.