• 제목/요약/키워드: Simplified assessment

검색결과 263건 처리시간 0.023초

조립품 심(seam)의 갭(gap)에 대한 정량적 심미평가의 기초연구 - 서랍장을 대상으로 한 사례연구 (A Preliminary Study for Quantifying Appearance Assessment of Assembly Seam Gaps - Case Study of Drawer Assembly)

  • 이해승;이래우;임현준
    • 한국CDE학회논문집
    • /
    • 제16권5호
    • /
    • pp.380-389
    • /
    • 2011
  • Esthetic appeal of a product is often affected by the appearance quality of seams forming between components of the product. The appearance quality of seams is, however, assessed in a very subjective and qualitative manner that heavily depends on the evaluator. This paper presents a preliminary study to quantify such assessment by formulating a quantitative index which is a linear function of the seam gap sizes, seam gap ranges, and the size uniformity of seam gaps. By considering a highly simplified problem of a drawer system and utilizing subjective assessments by twenty evaluators, the index has been formulated. The validity of this index has been confirmed by observing its behavior with changes of the component tolerances. Also, the utility of this index has been demonstrated through a selective assembly scheme applied to the drawer system problem. Though the index formulated in this study for seam appearance quality may be useful, future studies are necessary to make the model readily applicable to real problems.

Naval ship's susceptibility assessment by the probabilistic density function

  • Kim, Kwang Sik;Hwang, Se Yun;Lee, Jang Hyun
    • Journal of Computational Design and Engineering
    • /
    • 제1권4호
    • /
    • pp.266-271
    • /
    • 2014
  • The survivability of the naval ship is the capability of a warship to avoid or withstand a hostile environment. The survivability of the naval ship assessed by three categories (susceptibility, vulnerability and recoverability). The magnitude of susceptibility of a warship encountering with threat is dependent upon the attributes of detection equipment and weapon system. In this paper, as a part of a naval ship's survivability analysis, an assessment process model for the ship's susceptibility analysis technique is developed. Naval ship's survivability emphasizing the susceptibility is assessed by the probability of detection, and the probability of hit. Considering the radar cross section (RCS), the assessment procedure for the susceptibility is described. It's emphasizing the simplified calculation model based on the probability density function for probability of hit. Assuming the probability of hit given a both single-hit and multiple-hit, the susceptibility is accessed for a RCS and the hit probability for a rectangular target is applied for a given threat.

복합 공간데이터베이스 적용을 통한 해안 시설영역 지진 유발 지반재해의 가시적 평가 (Visible Assessment of Earthquake-induced Geotechnical Hazards by Adopting Integrated Geospatial Database in Coastal Facility Areas)

  • 김한샘;선창국
    • 한국지진공학회논문집
    • /
    • 제20권3호
    • /
    • pp.171-180
    • /
    • 2016
  • Earthquake event keeps increasing every year, and the recent cases of earthquake hazards invoke the necessity of seismic study in Korea, as geotechnical earthquake hazards, such as strong ground motion, liquefaction and landslides, are a significant threat to structures in industrial hub areas including coastal facilities. In this study, systemized framework of integrated assessment of earthquake-induced geotechnical hazard was established using advanced geospatial database. And a visible simulation of the framework was specifically conducted at two coastal facility areas in Incheon. First, the geospatial-grid information in the 3D domain were constructed with geostatistical interpolation method composed of multiple geospatial coverage mapping and 3D integration of geo-layer construction considering spatial outliers and geotechnical uncertainty. Second, the behavior of site-specific seismic responses were assessed by incorporating the depth to bedrock, mean shear wave velocity of the upper 30 m, and characteristic site period based on the geospatial-grid. Third, the normalized correlations between rock-outcrop accelerations and the maximum accelerations of each grid were determined considering the site-specific seismic response characteristics. Fourth, the potential damage due to liquefaction was estimated by combining the geospatial-grid and accelerations correlation grid based on the simplified liquefaction potential index evaluation method.

GIS기반의 터널 시공에 따른 위험도 평가 시스템 개발 및 적용 (Development and Implementation of A GIS-based Tunnelling Risk Management System)

  • 유충식;전영우;김재훈;박영진;유정훈
    • 한국지반공학회논문집
    • /
    • 제20권1호
    • /
    • pp.49-59
    • /
    • 2004
  • 본 논문에서는 도심지에서의 터널 시공에 따른 지반거동을 평가하고 이에 따른 인접 건물 혹은 매설관의 위험도를 평가하는 GIS기반의 위험도 관리 시스템(GIS-TURIMS) 개발에 대한 내용을 다루었다. 본 시스템은 상용 GIS 소프트웨어인 ArcView 8.1을 기반으로 개발되었고, VB(Visual Basic)와 VBA(Visual Basic Application)를 사용하여 터널시공으로 인한 지반거동과 건물 손상정도의 공학적 연산을 수행할 수 있도록 하였다. 개발된 시스템은 GIS기술의 장점을 최대한 활용하여 터널 시공으로 인한 지반거동, 건물/매설관 손상평가의 강력한 해석을 수행할 수 있도록 하였다. 본 논문에서는 GIS-TURIMS의 개요와 개발과정에 대하여 상세히 다루었다.

A new optimized performance-based methodology for seismic collapse capacity assessment of moment resisting frames

  • Maddah, Mohammad M.;Eshghi, Sassan;Garakaninezhad, Alireza
    • Structural Engineering and Mechanics
    • /
    • 제82권5호
    • /
    • pp.667-678
    • /
    • 2022
  • Moment-resisting frames (MRFs) are among the most conventional steel structures for mid-rise buildings in many earthquake-prone cities. Here, a simplified performance-based methodology is proposed for the seismic collapse capacity assessment of these buildings. This method employs a novel multi-mode pushover analysis to determine the engineering demand parameters (EDPs) of the regular steel MRFs up to the collapse prevention (CP) performance level. The modal combination coefficients used in the proposed pushover analysis, are obtained from two metaheuristic optimization algorithms and a fitting procedure. The design variables for the optimization process are the inter-story drift ratio profiles resulting from the multi-mode pushover analyses, and the objective values are the outcomes of the incremental dynamic analysis (IDA). Here, the collapse capacity of the structures is assessed in three to five steps, using a modified IDA procedure. A series of regular mid-rise steel MRFs are selected and analyzed to calculate the modal combination coefficients and to validate the proposed approach. The new methodology is verified against the current existing approaches. This comparison shows that the suggested method more accurately evaluates the EDPs and the collapse capacity of the regular MRFs in a robust and easy to implement way.

Proof tests of REBCO coated conductor tapes for device applications through electromechanical property assessment at 77 K

  • Mark Angelo Diaz;Michael De Leon;Hyung-Seop Shin;Ho-Sang Jung;Jaehun Lee
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권3호
    • /
    • pp.34-37
    • /
    • 2023
  • The practical application of REBCO coated conductor (CC) tapes, vital for energy transmission (e.g., cable application) and high-field magnets (e.g., coil application), necessitates efficient and simple quality assessment procedures. This study introduces a systematic approach to assess the electromechanical properties of REBCO CC tapes under 77 K and self-field conditions. The approach involves customized tensile and bending tests that clarify the critical current (Ic) response of the CC tapes under mechanical loads induced by tension and bending. This study measures the retained Ic values of commercially available GdBCO CC tapes under 250 MPa tensile stress and 40 mm bending diameter. Through experimentation, the study demonstrates the resilience of these tapes and their suitability for applications. By presenting a simplified stress-based analysis and a bending test of the tapes, the study contributes to effective quality assessment methods for the development of practical superconducting products.

Liquefaction hazard assessment in a GIS environment: A case study of Buğday Pazarı neighborhood in Çankırı province

  • Erenm Yurdakul;Sevkim Ozturk;Enderm Sarifakioglu
    • Geomechanics and Engineering
    • /
    • 제36권5호
    • /
    • pp.455-464
    • /
    • 2024
  • Seismic movements have varying effects on structures based on characteristics of local site. During an earthquake, weak soils are susceptible to damage due to amplified wave amplitudes. Soil-structure interaction issue has garnered increased attention in Türkiye, after devastating earthquakes in Kocaeli Gölcük (1999), Izmir (2020), Kahramanmaraş Pazarcık and Elbistan (2023). Consequently, liquefaction potential has been investigated in detail for different regions of Türkiye, mainly with available field test results. Çankırı, a city located close to North Anatolian Fault, is mainly built on alluvium, which is prone to liquefaction. However, no study on liquefaction hazard has been conducted thus far. In this study, groundwater level map, SPT map, and liquefaction risk map have been generated using Geographical Information System (GIS) for the Buğday Pazarı District of Çankırı province. Site investigations studies previously performed for 47 parcels (76 boreholes) were used within the scope of this study. The liquefaction assessment was conducted using Seed and Idriss's (1971) simplified method and the visualization of areas susceptible to liquefaction risk has been accomplished. The results of this study have been compared with the City Council's precautionary map which is currently in use. As a result of this study, it is recommended that minimum depth of boreholes in the region should be at least 30m and adequate number of laboratory tests particularly in liquefiable areas should be performed. Another important recommendation for the region is that detailed investigation should be performed by local authorities since findings of this study differ from currently used precautionary map.

LCD 유리원판 진공식 합착공정 해석을 위한 수치모델 (A Simulation Model for Vaccum-Driven Bonding of Glass Panels in the Cell Process for LCD Manufacturing)

  • 지철욱;곽호상;김경훈
    • 한국전산유체공학회지
    • /
    • 제8권2호
    • /
    • pp.33-41
    • /
    • 2003
  • A simplified simulation model is designed to investigate the vacuum-driven bonding of glass panels in the cell process for LCD manufacturing. The bonding process is modelled by the transient flow of a weakly-compressible fluid in a very thin channel between two horizontal glass panels. An order of magnitude scaling analysis is conducted based on the characteristic feature of the channel of which height is much smaller than the horizontal length scales. It is revealed that the flow in the channel is represented by a Poiseuille flow of a compressible fluid. A finite volume model has been constructed to acquire the numerical solution to the derived simplified equations. For a simple test problem of pressure-driven microchannel flow, an assessment is made of the accuracy and validity of the proposed model. The basic aspects of vacuum-driven bonding are examined numerically, and the applicability of the present simulation model is illustrated.

대형폐기물 매립지반 액상화 평가 (The Liquefaction Assessment for Large-sized Waste Landfill Site)

  • 박인준;최승호;유병준;마호성
    • 한국재난관리표준학회지
    • /
    • 제2권2호
    • /
    • pp.69-74
    • /
    • 2009
  • 본 연구는 대형폐기물 매립장 건설에 따른 매립원지반의 액상화가능성 예측을 통해 폐기물 매립장의 내진 안전성을 평가하고자 한다. 본 연구의 목적을 달성하고자 실내시험 및 지진응답해석결과를 바탕으로 액상화 간편 및 상세 예측법을 사용하여 매립 원지반의 액상화 평가를 수행하였다. 지진응답해석 결과 최대가속도는 0.169 g(BH-14)로 산정되었으며 액상화 간편예측 결과 BH-14를 제외한 대부분 지역은 안전하였다. 액상화 간편 예측법에서 불안전했던 BH-14는 액상화 상세 예측결과 안전율 1.0이상으로 액상화에 안전하다고 판단된다.

  • PDF

Are theoretically calculated periods of vibration for skeletal structures error-free?

  • Mehanny, Sameh S.F.
    • Earthquakes and Structures
    • /
    • 제3권1호
    • /
    • pp.17-35
    • /
    • 2012
  • Simplified equations for fundamental period of vibration of skeletal structures provided by most seismic design provisions suffer from the absence of any associated confidence levels and of any reference to their empirical basis. Therefore, such equations may typically give a sector of designers the false impression of yielding a fairly accurate value of the period of vibration. This paper, although not addressing simplified codes equations, introduces a set of mathematical equations utilizing the theory of error propagation and First-Order Second-Moment (FOSM) techniques to determine bounds on the relative error in theoretically calculated fundamental period of vibration of skeletal structures. In a complementary step, and for verification purposes, Monte Carlo simulation technique has been also applied. The latter, despite involving larger computational effort, is expected to provide more precise estimates than FOSM methods. Studies of parametric uncertainties applied to reinforced concrete frame bents - potentially idealized as SDOF systems - are conducted demonstrating the effect of randomness and uncertainty of various relevant properties, shaping both mass and stiffness, on the variance (i.e. relative error) in the estimated period of vibration. Correlation between mass and stiffness parameters - regarded as random variables - is also thoroughly discussed. According to achieved results, a relative error in the period of vibration in the order of 19% for new designs/constructions and of about 25% for existing structures for assessment purposes - and even climbing up to about 36% in some special applications and/or circumstances - is acknowledged when adopting estimates gathered from the literature for relative errors in the relevant random input variables.