• 제목/요약/키워드: Simplified Energy Method

검색결과 233건 처리시간 0.036초

신재생에너지와 부하의 불확실성을 고려한 마이크로그리드의 단순화된 강인최적운영 기법에 관한 연구 (A Study on Simplified Robust Optimal Operation of Microgrids Considering the Uncertainty of Renewable Generation and Loads)

  • 이병하
    • 전기학회논문지
    • /
    • 제66권3호
    • /
    • pp.513-521
    • /
    • 2017
  • Robust optimal operation of a microgrid is required since the increase of the penetration level of renewable generators in the microgrid raises uncertainty due to their intermittent power output. In this paper, an application of probabilistic optimization method to economical operation of a microgrid is studied. To simplify the treatment of the uncertainties of renewable generations and load, the new 'band of virtual equivalent load variation' is introduced considering their uncertainties. A simplified robust optimization methodology to generate the scenarios within the band of virtual equivalent load variation and to obtain the optimal solution for the worst scenario is presented based on Monte Carlo method. The microgrid to be studied here is composed of distributed generation system(DGs), battery systems and loads. The distributed generation systems include combined heat and power(CHP) and small generators such as diesel generators and the renewable energy generators such as photovoltaic(PV) systems and wind power systems. The modeling of the objective function for considering interruption cost by the penalty function is presented. Through the case study for a microgrid with uncertainties, the validity of proposed robust optimization methodology is evaluated.

사고선박 예인력 계산을 위한 공기저항 간편 추정법 연구 (A Study on the Simplified Prediction Method of Air Resistance for Towing Force Calculation of Disabled Ships)

  • 김은찬;최혁진
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제17권3호
    • /
    • pp.198-204
    • /
    • 2014
  • 바다를 항해하는 선박은 수면 상부 선체가 공기저항을 받게 된다. 이 공기저항은 수면 상부 선체의 형상, 선속, 풍속 그리고 풍향의 영향을 받는다. 공기저항을 추정하는 실험적인 또는 통계적인 방법은 사고 선박의 예인력을 계산하는 중요한 절차 가운데 하나이다. 본 논문에서는 수면 상부 선체의 투영면적과 선속과 풍속과 풍향을 변수로 사용하여, 실험 또는 통계 분석 방법으로 공기저항을 간편하게 추정하는 방법을 보여주었다. 이 방법들은 기존의 사고선박 예인력 추정을 위한 전산 프로그램에 적용하였다.

On the use of flyash-lime-gypsum (FaLG) bricks in the storage facilities for low level nuclear waste

  • Sidhu, Baltej Singh;Dhaliwal, A.S.;Kahlon, K.S.;Singh, Suhkpal
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.674-680
    • /
    • 2022
  • In the present study, radiation shielding and protection ability of prepared Flyash-lime-Gypsum (FaLG) bricks has been studied in terms of energy exposure build up factors and dose parameters. The energy exposure build up factors of Flyash-lime-Gypsum (FaLG) bricks have been calculated for the energy range of 0.015 MeV-15 MeV and for penetration depth upto 40 mfp directly using a new and simplified Piecewise Linear Spline Interpolation Method (PLSIM). In this new method, the calculations of G.P fitting parameters are not required. The verification and accuracy of this new method has been checked by comparing the results of exposure build up factor for NBS concrete calculated using present method with the results obtained by using G.P fitting method. Further, the relative dose distribution and reduced exposure dose rate for various radioactive isotopes without any shielding material and with Flyash-lime-Gypsum (FaLG) bricks have been calculated in the energy range of 59.59-1332 keV. On the basis of the obtained results, it has been reported that the prepared Flyash-lime-Gypsum (FaLG) bricks possess satisfactory radiation shielding properties and can be used as environmentally safe storage facilities for low level nuclear waste.

온도측정에 의한 히트파이프의 수명예측 (Prediction of Life of Heat Pipes by Measuring Temperature Distribution)

  • 신흥태;;이윤표
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.856-863
    • /
    • 1999
  • The thermal performance degradation of heat pipes is caused by the non-condensable gas generation mainly due to the electrochemical corrosion which results from the reaction of working fluids with tube materials. In this study, a simplified method described below was proposed to estimate the life of heat pipes concerning the non-condensable gas generation. The temperature distributions at the outer surface of heat pipes was measured, and based on them the amount of non-condensable gas of hydrogen was estimated. Applying it to the Arrhenius model, the mass generation of hydrogen and the volume occupied by the gas In heat pipes could be estimated for an operating temperature and time. Moreover, this simplified method was applied to the accelerated life test of nine methanol-stainless steel heat pipe samples.

A Simple Prediction Model for PCC Voltage Variation Due to Active Power Fluctuation of a Grid Connected Wind Turbine

  • Kim, Sang-Jin;Seong, Se-Jin
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.85-92
    • /
    • 2009
  • This paper studies the method to predict voltage variation that can be presented in the case of operating a small-sized wind turbine in grid connection to the isolated small-sized power system. In order to do this, it makes up the simplified simulation model of the existing power plant connected to the isolated system, load, transformer, and wind turbine on the basis of PSCAD/EMTDC and compares them with the operating characteristics of the actual established wind turbine. In particular, it suggests a simplified model formed with equivalent impedance of the power system network including the load to analytically predict voltage variation at the connected point. It also confirms that the voltage variation amount calculated by the suggested method accords well with both simulation and actually measured data. The results can be utilized as a tool to ensure security and reliability in the stage of system design and preliminary investigation of a small-sized grid connected wind turbine.

기존 공동 주택의 벽체 열성능 현장 측정법에 관한 연구 (The study of in-situ measurement method for wall thermal performance diagnosis of existing apartment)

  • 김서훈;김종훈;류승환;정학근;송규동
    • KIEAE Journal
    • /
    • 제16권4호
    • /
    • pp.71-77
    • /
    • 2016
  • Purpose : The energy saving in a residential building (apartment) sector is known as one of the effective solution of energy reduction. In South Korea, the government has recently reinforced regulations associated with the energy performance of buildings. However, there is a lack of research on the methods for the energy performance diagnosis that is used to analyze the wall thermal performance of the existing apartments. Because a reliable diagnosis is necessary to save the building energy, this study analyzed wall thermal performance of an existing apartment in Seoul. Method : This paper applied two methods for analysis of the thermal insulation performance; HFM(Heat Flow Meter) method and ASTR(Air-Surface Temperature Ratio) method. The HFM method is suggested by ISO9869-1 code to measure the thermal performance. The ASTR method is proposed by this study for the simplified In-situ measurement and it uses three temperature data (interior wall surface, interior and exterior air) and the overall heat transfer coefficient. This study conducted the experiment of an existing apartment in Seoul using these methods and analyzed the results. Furthermore, the energy simulation tool of the building was used to suggest retrofit of the building based on the results of measurements. Result : The error rate of HFM method and ASTR method was analyzed in about 17 to 20%. As the results of comparison between the initial design values of the wall and the measured values, the 26% degradation of insulation thermal performance was measured. Lastly, the energy simulation tool of the building shows 10.8% energy savings in accordance with the construction of suggested retrofit.

Structural integrity assessment procedure of PCSG unit block using homogenization method

  • Gyogeun Youn;Wanjae Jang;Youngjae Jeon;Kang-Heon Lee;Gyu Mahn Lee;Jae-Seon Lee;Seongmin Chang
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1365-1381
    • /
    • 2023
  • In this paper, a procedure for evaluating the structural integrity of the PCSG (Printed Circuit Steam Generator) unit block is presented with a simplified FE (finite element) analysis technique by applying the homogenization method. The homogenization method converts an inhomogeneous elastic body into a homogeneous elastic body with same mechanical behaviour. This method is effective when the inhomogeneous elastic body has repetitive microstructures, and thus the method was applied to the sheet assembly among the PCSG unit block components. From the method, the homogenized equivalent elastic constants of the sheet assembly were derived. The validity of the determined material properties was verified by comparing the mechanical behaviour with the reference model. Thermo-mechanical analysis was then performed to evaluate the structural integrity of the PCSG unit block, and it was found that the contact region between the steam header and the sheet assembly is a critical point where large bending stress occurs due to the temperature difference.

Fracture energy and tension softening relation for nano-modified concrete

  • Murthy, A. Ramachandra;Ganesh, P.;Kumar, S. Sundar;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • 제54권6호
    • /
    • pp.1201-1216
    • /
    • 2015
  • This paper presents the details of size independent fracture energy and bi-linear tension softening relation for nano modified high strength concrete. Nano silica in powder form has been used as partial replacement of cement by 2 wt%. Two popular methods, namely, simplified boundary effect method of Karihaloo et al. (2003) and RILEM (1985) fracture energy with P-${\delta}$ tail correction have been employed for estimation of size independent fracture energy for nano modified high strength concrete (compressive strength ranges from 55 MPa to 72 MPa). It is found that both the methods gave nearly same values, which is an additional evidence that either of them can be employed for determination of size independent fracture energy. Bi-linear tension softening relation corresponding to their size independent fracture energy has been constructed in an inverse manner based on the concept of non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams.

사무소건물에서 자연채광에 의한 조명에너지 절약의 평가 (Artificial Lighting Energy Saving by Daylighting in Office Building)

  • 임병찬
    • 설비공학논문집
    • /
    • 제16권6호
    • /
    • pp.608-613
    • /
    • 2004
  • Artificial lighting accounts for a significant portion of the energy use in office buildings. Therefore, daylighting is considered one of the fundamental design features of energy-efficient buildings. However, complex daylighting simulation tools are not suitable for most designers to help in the decision-making process. This paper provides the results of a simulation analysis to determine the potential energy savings of daylighting effects reducing electrical energy consumption for office building. A whole building simulation tool is used to determine the effects of daylighting on lighting electricity use as well as total electricity use for typical office buildings. It was determined that daylighting does not provide significant additional lighting energy savings when glass transmittance is increased over 0.7 A simplified method is developed based on the analysis results to estimate the annual electrical energy savings attributed to daylighting.