• Title/Summary/Keyword: Simplified 평가

Search Result 504, Processing Time 0.027 seconds

The effect of adhesive thickness on microtensile bond strength to the cavity wall (와동벽에서 접착제의 두께가 미세인장 결합강도에 미치는 영향)

  • Lee, Hwa-Eon;Kim, Hyeon-Cheol;Hur, Bock;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • The purposes of this study were to examine the variability of adhesive thickness on the different site of the cavity wall when used total-etch system without filler and simplified self-etch system with filler and to evaluate the relationship between variable adhesive thickness and microtensile bond strength to the cavity wall. A class I cavity in six human molars was prepared to expose all dentinal walls. Three teeth were bonded with a filled adhesive, $Clearfil^{TM}$ SE bond ana the other three teeth were bonded with unfilled adhesives, $Scotchbond^{TM}$ Multi Purpose. Morphology and thickness of adhesive layer were examined using fluorescence microscope. Bonding agent thickness was measured at three points along the axial cavity wall edge of cavity margin (rim). halfway down each cavity wall (h1f), internal angle of the cavity (ang). After reproducing the adhesive thickness at rim, h1f and ang, micro-tensile bond strength were evaluated. For both bonding agents, adhesive thickness of ang was significantly thicker than that of rim and h1f (P <0.05). As reproduced the adhesive thickness, microtensile bond strength was increased as adhesive thickness was increased in two bonding agents. Adhesive thickness of internal angle of the cavity was significantly thicker than that of the cavity margin and the halfway cavity wall for both bonding agents. Microtensile bond strength of the thick adhesive layer at the internal angle of the cavity was higher than that of the thin adhesive layer at 1,he cavity margin and the halfway cavity in the two bonding systems.

Assessment of the uncertainty in the SWAT parameters based on formal and informal likelihood measure (정형·비정형 우도에 의한 SWAT 매개변수의 불확실성 평가)

  • Seong, Yeon Jeong;Lee, Sang Hyup;Jung, Younghun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.931-940
    • /
    • 2019
  • In hydrologic models, parameters are mainly used to reflect hydrologic elements or to supplement the simplified models. In this process, the proper selection of the parameters in the model can reduce the uncertainty. Accordingly, this study attempted to quantify the uncertainty of SWAT parameters using the General Likelihood Uncertainty Estimation (GLUE). Uncertainty analysis on SWAT parameters was conducted by using the formal and informal likelihood measures. The Lognormal function and Nash-Sutcliffe Efficiency (NSE) were used for formal and informal likelihood, respectively. Subjective factors are included in the selection of the likelihood function and the threshold, but the behavioral models were created by selecting top 30% lognormal for formal likelihood and NSE above 0.5 for informal likelihood. Despite the subjectivity in the selection of the likelihood and the threshold, there was a small difference between the formal and informal likelihoods. In addition, among the SWAT parameters, ALPHA_BF which reflects baseflow characteristics is the most sensitive. Based on this study, if the range of SWAT model parameters satisfying a certain threshold for each watershed is classified, it is expected that users will have more practical or academic access to the SWAT model.

A Study on the Dynamic Lateral Displacements of Caisson Quay Walls in Moderate Earthquake Regions (중진지역에서 케이슨 안벽의 동적수평변위 특성에 관한 연구)

  • Park, Keun-Bo;Sim, Jae-Uk;Cha, Seung-Hun;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.137-148
    • /
    • 2008
  • In this study, 28 earthquake records with magnitudes from 5.3 to 7.9 are selected for dynamic analysis in order to assess applicability of the earthquakes for domestic seismic design. The assessment is performed using the seismic spectrum analysis of energy and acceleration. Based on results of the analysis, four acceleration time histories, which satisfy the Korean design standard response spectrum, are proposed. From the dynamic analysis using earthquake magnitudes from 6.4 to 7.9, it is found that horizontal displacements corresponding to earthquake magnitudes greater than 7 are two times larger than those with magnitude 6.5. Therefore, it can be stated that use of strong earthquakes, such as Miyagiken-ken-oki earthquake (Ofunato, $M_{JMA}=7.4$) and Tokachi-oki earthquake (Hachinohe, $M_{JMA}=7.9$), for the seismic design in Korea is not applicable, and may prove to be excessively conservative due to overestimated seismic force. From the dynamic analyses using the proposed acceleration time histories, effects of caisson quay wall dimension and the subsoil condition are investigated as well. The simplified design charts to evaluate horizontal displacements of caisson quay wall are also proposed based on earthquake magnitude 6.5 that is appropriate in Korea.

Assessment of Two Clinical Prediction Models for a Pulmonary Embolism in Patients with a Suspected Pulmonary Embolism (폐색전증이 의심된 환자에서 두 가지 폐색전증 진단 예측 모형의 평가)

  • Park, Jae Seok;Choi, Won-Il;Min, Bo Ram;Park, Jie Hae;Chae, Jin Nyeong;Jeon, Young June;Yu, Ho Jung;Kim, Ji-Young;Kim, Gyoung-Ju;Ko, Sung-Min
    • Tuberculosis and Respiratory Diseases
    • /
    • v.64 no.4
    • /
    • pp.266-271
    • /
    • 2008
  • Background: Estimation of the probability of a patient having an acute pulmonary embolism (PE) for patients with a suspected PE are well established in North America and Europe. However, an assessment of the prediction rules for a PE has not been clearly defined in Korea. The aim of this study is to assess the prediction rules for patients with a suspected PE in Korea. Methods: We performed a retrospective study of 210 inpatients or patients that visited the emergency ward with a suspected PE where computed tomography pulmonary angiography was performed at a single institution between January 2005 and March 2007. Simplified Wells rules and revised Geneva rules were used to estimate the clinical probability of a PE based on information from medical records. Results: Of the 210 patients with a suspected PE, 49 (19.5%) patients had an actual diagnosis of a PE. The proportion of patients classified by Wells rules and the Geneva rules had a low probability of 1% and 21%, an intermediate probability of 62.5% and 76.2%, and a high probability of 33.8% and 2.8%, respectively. The prevalence of PE patients with a low, intermediate and high probability categorized by the Wells rules and Geneva rules was 100% and 4.5% in the low range, 18.2% and 22.5% in the intermediate range, and 19.7% and 50% in the high range, respectively. Receiver operating characteristic curve analysis showed that the revised Geneva rules had a higher accuracy than the Wells rules in terms of detecting PE. Concordance between the two prediction rules was poor ($\kappa$ coefficient=0.06). Conclusion: In the present study, the two prediction rules had a different predictive accuracy for pulmonary embolisms. Applying the revised Geneva rules to inpatients and emergency ward patients suspected of having PE may allow a more effective diagnostic process than the use of the Wells rules.

Indicators for the Quantitative Assessment of Tree Vigor Condition and Its Theoretical Implications : A Case Study of Japanese Flowering-cherry Trees in Urban Park (도시공원에 식재된 왕벚나무 수종을 중심으로 한 수목활력도의 정량평가지표 개발 및 이론적 고찰에 관한 연구)

  • Song, Youngkeun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.4
    • /
    • pp.57-67
    • /
    • 2014
  • The vigor condition of trees is an important indicator for the management of urban forested area. But difficulties in how to assess the tree vigor condition still remain. Previous efforts were limited in the 1) measurement of single indicator rather than using multiple indices, 2) purpose-oriented measurement such as for air-pollution effect or specific pathological symptom, and 3) ordinal-scale evaluations by field crews 4) despite human errors based on his/her experiences or prior knowledge. Therefore, this study attempted to develop a quantitative and objective methodology for assessing tree vigor condition, by measuring multiple modules and building the profile inventory. Furthermore, the possibility and limitations were discussed in terms of schematic frames describing tree vigor condition. The vigor condition of 56 flowering cherry plants in urban park were assessed by in-situ measurements of following eight items; growth of crown(Gc), growth of shoots, individual tree volume(Vol), plant area index, woody area index, leaf area index, leaf chlorophyll content(Lc) and leaf water content(Lw). For validation, these measurements were compared with the ranks of holistic tree vigor condition, which were visually assessed using a 4-point grading scale based on the expert's knowledge. As a result, the measures of each evaluation item successfully highlighted a variety of aspects in tree vigor condition, including the states of both photosynthetic and non-photosynthetic parts. The variation in the results depending on evaluated parts was shown within an individual tree, even though the broad agreement among the results was found. The result of correlation analysis between the tested measurements and 4-point visual assessment, demonstrated that the state of water-stressed foliage of the season (Lw) or the development of plant materials since sapling phase (Vol) could be better viewed from the outer appearance of trees than other symptoms. But only based on the visual assessment, it may be difficult to detect the quality of photosynthesis (Lc) or the recent trend in growth of trees (Gc). To make this methodology simplified for the broad-scale application, the tested eight measurements could be integrated into two components by principal component analysis, which was labelled with 'the amount of plant materials' and 'vigor trend', respectively. In addition, the use of these quantitative and multi-scale indicators underlies the importance of assessing various aspects of tree vigor condition, taking into account the response(s) on different time and spatial scale of pressure(s) shown in each evaluated module. Future study should be advanced for various species at diverse developing stages and environment, and the application to wide areas at a periodic manner.

Region-based Building Extraction of High Resolution Satellite Images Using Color Invariant Features (색상 불변 특징을 이용한 고해상도 위성영상의 영역기반 건물 추출)

  • Ko, A-Reum;Byun, Young-Gi;Park, Woo-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.75-87
    • /
    • 2011
  • This paper presents a method for region-based building extraction from high resolution satellite images(HRSI) using integrated information of spectral and color invariant features without user intervention such as selecting training data sets. The purpose of this study is also to evaluate the effectiveness of the proposed method by applying to IKONOS and QuickBird images. Firstly, the image is segmented by the MSRG method. The vegetation and shadow regions are automatically detected and masked to facilitate the building extraction. Secondly, the region merging is performed for the masked image, which the integrated information of the spectral and color invariant features is used. Finally, the building regions are extracted using the shape feature for the merged regions. The boundaries of the extracted buildings are simplified using the generalization techniques to improve the completeness of the building extraction. The experimental results showed more than 80% accuracy for two study areas and the visually satisfactory results obtained. In conclusion, the proposed method has shown great potential for the building extraction from HRSI.

Validation on the Utilization of Small-scale Unmanned Aerial Systems(sUAS) for Topographic Volume Calculations (토공량 산정을 위한 소형무인항공시스템의 활용성 평가)

  • Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.111-126
    • /
    • 2017
  • Small-scale UAS(Fusion technique of Unmanned Aerial Vehicles platform and Sensors, 'sUAS') opens various new applications in construction fields and so becoming progressively common due to the considerable potentials in terms of accuracy, costs and abilities. The purpose of this study is that the investigation of the validation on the utilization of sUAS for earth stockpile volume calculations on sites. For this, generate 3D models(DSM) with sUAS aerial images on an cone shaped soil stockpile approximately $270m{\times}300m{\times}20m$, which located at Baegot Life Park in Siheung-si, compared stockpile volume estimates produced by sUAS image analysis, against volume estimates obtained by GNSS Network-RTK ground surveying method which selected as the criteria of earth stockpile volume. The result through comparison and examination show(demonstrate) that there was under 2% difference between the volume calculated with the GNSS Network RTK data and the sUAV data, especially sUAS imaged-based volume estimate of a stockpile can be greatly simplified, done quickly, and very cost effective over conventional terrestrial survey methods. Therefore, with consideration of various plan to assess the height of vegetation, sUAS image-based application expected very useful both volume estimate and 3D geospatial information extraction in small and medium-sized sites.

Development of Digital Image Acquisition System for the Road Safety Survey and Analysis Vehicle (도로안전성 조사분석차량을 위한 영상취득시스템 개발)

  • Jeong, Dong-Hoon;Yoon, Chun-Joo;Sung, Jung-Gon
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.163-171
    • /
    • 2005
  • Current roads were designed and constructed based on the design criteria and thus those were overly simplified drivers' needs. The road criteria do not suggest the desirable range of the design values but suggest the minimum requirements for the road design. Therefore, a completed road design based on the design criteria does not always guarantee the best design in terms of safety and it sometimes violates drivers' expectation. Therefore, the ROSSAV(ROad Safety Survey and Analysis Vehicle) is being developed by the KICT to evaluate road safety and increase driving safety. In this paper, the image capture system was described in detail. The image capture system is consisted of two front view cameras, two side down-looking cameras and a synchronization device. Two front view cameras were used to take a picture of road and road facilities at the driver's viewpoint. Also, two side down-looking cameras were used to capture road surface image to extract lane markings. A synchronization device were used to generate image capturing signal at the fixed distance spacing huck as every 10m. The front view images could be used to calculate and measure highway geometry such as shoulder width because every image is saved with it's locational information. And also the side down looking images could be used to extract median lane mark which representing road alignement efficiently.

  • PDF

Numerical Simulation of Dynamic Soil-pile Interaction for Dry Condition Observed in Centrifuge Test (원심모형실험에서 관측된 건조 지반-말뚝 동적 상호작용의 수치 모델링)

  • Kown, Sun-Yong;Kim, Seok-Jung;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.4
    • /
    • pp.5-14
    • /
    • 2016
  • Numerical simulation of dynamic soil-pile-structure interaction embedded in a dry sand was carried out. 3D model of the dynamic centrifuge model tests was formulated in a time domain to consider nonlinear behavior of soil using the finite difference method program, FLAC3D. As a modeling methodology, Mohr-Coulomb criteria was adopted as soil constitutive model. Soil nonlinearity was considered by adopting the hysteretic damping model, and an interface model which can simulate separation and slip between soil and pile was adopted. Simplified continuum modeling (Kim et al., 2012) was used as boundary condition to reduce analysis time. Calibration process for numerical modeling results and test results was performed through the parametric study. Verification process was then performed by comparing numerical modeling results with another test results. Based on the calibration and validation procedure, it is identified that proposed modeling method can properly simulate dynamic behavior of soil-pile system in dry condition.

Multi-FNN Identification by Means of HCM Clustering and ITs Optimization Using Genetic Algorithms (HCM 클러스터링에 의한 다중 퍼지-뉴럴 네트워크 동정과 유전자 알고리즘을 이용한 이의 최적화)

  • 오성권;박호성
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.487-496
    • /
    • 2000
  • In this paper, the Multi-FNN(Fuzzy-Neural Networks) model is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNN is based on Yamakawa's FNN and uses simplified inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and Genetic Algorithms(GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNN model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. The aggregate performance index stands for an aggregate objective function with a weighting factor to consider a mutual balance and dependency between approximation and predictive abilities. According to the selection and adjustment of a weighting factor of this aggregate abjective function which depends on the number of data and a certain degree of nonlinearity, we show that it is available and effective to design an optimal Multi-FNN model. To evaluate the performance of the proposed model, we use the time series data for gas furnace and the numerical data of nonlinear function.

  • PDF