• 제목/요약/키워드: Simple genetic algorithm

검색결과 299건 처리시간 0.026초

GA와 SA 알고리듬의 조합을 이용한 최적의 BPCGH의 설계 (Design of optimal BPCGH using combination of GA and SA Algorithm)

  • 조창섭;김철수;김수중
    • 한국통신학회논문지
    • /
    • 제28권5C호
    • /
    • pp.468-475
    • /
    • 2003
  • 본 논문에서는 패턴생성을 위한 최적의 이진 위상 컴퓨터형성 홀로그램을 설계하기 위해 합성된 SA알고리듬 및 유전 알고리듬을 이용하였다. 제안된 방법의 탐색과정에서 sGA를 사용하여 BPCGH를 생성하고. 결과 홀로그램 패턴을 SA 알고리듬의 초기 랜덤 투과함수로 이용하여 최적의 BPCGH를 설계하였다. 컴퓨터 시뮬레이션에서 독립적으로 사용된 SA 알고리듬과 유전 알고리듬을 비교한 결과 제안한 알고리듬이 회절 효율이 향상된 것을 확인할 수 있었다.

유전자알고리즘 및 경험법칙을 이용한 1차원 부재의 최적 절단계획 (Optimal Cutting Plan for 1D Parts Using Genetic Algorithm and Heuristics)

  • 조경호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.554-558
    • /
    • 2001
  • In this study, a hybrid method is used to search the pseudo-optimal solution for the I-dimentional nesting problem. This method is composed of the genetic algorithm for the global search and a simple heuristic one for the local search near the pseudo optimal solution. Several simulation results show that the hybrid method gives very satisfactory results.

  • PDF

Spatial Contrast Enhancement using Local Statistics based on Genetic Algorithm

  • Choo, MoonWon
    • Journal of Multimedia Information System
    • /
    • 제4권2호
    • /
    • pp.89-92
    • /
    • 2017
  • This paper investigates simple gray level image enhancement technique based on Genetic Algorithms and Local Statistics. The task of GA is to adapt the parameters of local sliding masks over pixels, finding out the best parameters preserving the brightness and possibly preventing the creation of intensity artifacts in the local area of images. The algorithm is controlled by GA as to enhance the contrast and details in the images automatically according to an object fitness criterion. Results obtained in terms of subjective and objective evaluations, show the plausibility of the method suggested here.

멀티캐스트 라우팅을 위한 다목적 마이크로-유전자 알고리즘 (Multi-Objective Micro-Genetic Algorithm for Multicast Routing)

  • 전성화;한치근
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (A)
    • /
    • pp.916-918
    • /
    • 2005
  • 다목적 최적화 문제의 목표는 다양한 파레토 최적해(Pareto Optimal Solution)을 찾는데 있으며, 마이크로-유전자 알고리즘(Micro-Genetic Algorithm)은 단순 유전자 알고리즘(Simple Genetic Algorithm)에 비해 소수의 유전자들만을 선별하여 진화시키는 방식으로 효율성을 극대화시킨다. 본 논문에서는 다양한 목적을 동시에 최적화하는 다목적 멀티캐스트 라우팅 문제를 해결하기 위해서 다목적 유전자 알고리즘과 마이크로-유전자 알고리즘을 결합한 다목적 마이크로-유전자 알고리즘을 적용하였다.

  • PDF

전역 및 국소 최적화탐색을 위한 향상된 유전 알고리듬의 제안 (An Enhanced Genetic Algorithm for Global and Local Optimization Search)

  • 김영찬;양보석
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1008-1015
    • /
    • 2002
  • This paper proposes a combinatorial method to compute the global and local solutions of optimization problem. The present hybrid algorithm is the synthesis of a genetic algorithm and a local concentrate search algorithm (simplex method). The hybrid algorithm is not only faster than the standard genetic algorithm, but also gives a more accurate solution. In addition, this algorithm can find both the global and local optimum solutions. An optimization result is presented to demonstrate that the proposed approach successfully focuses on the advantages of global and local searches. Three numerical examples are also presented in this paper to compare with conventional methods.

A Hybrid Genetic Ant Colony Optimization Algorithm with an Embedded Cloud Model for Continuous Optimization

  • Wang, Peng;Bai, Jiyun;Meng, Jun
    • Journal of Information Processing Systems
    • /
    • 제16권5호
    • /
    • pp.1169-1182
    • /
    • 2020
  • The ant colony optimization (ACO) algorithm is a classical metaheuristic optimization algorithm. However, the conventional ACO was liable to trap in the local minimum and has an inherent slow rate of convergence. In this work, we propose a novel combinatorial ACO algorithm (CG-ACO) to alleviate these limitations. The genetic algorithm and the cloud model were embedded into the ACO to find better initial solutions and the optimal parameters. In the experiment section, we compared CG-ACO with the state-of-the-art methods and discussed the parameter stability of CG-ACO. The experiment results showed that the CG-ACO achieved better performance than ACOR, simple genetic algorithm (SGA), CQPSO and CAFSA and was more likely to reach the global optimal solution.

다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(II): 선호적 순서화의 적용 (Optimization of Tank Model Parameters Using Multi-Objective Genetic Algorithm (II): Application of Preference Ordering)

  • 구보영;김태순;정일원;배덕효
    • 한국수자원학회논문집
    • /
    • 제40권9호
    • /
    • pp.687-696
    • /
    • 2007
  • 본 연구는 다목적 유전자알고리즘을 이용하여 Tank 모형의 매개변수를 추정하는데 있어서 선호적순서화(preference ordering)를 적용한 연구로써, 목적함수의 개수가 여러 개인 경우에 발생할 수 있는 파레토최적화의 단점을 해결하기 위한 것이다. 최적화를 위한 목적함수는 모두 4가지를 사용하였으며, 선호적순서화를 통해서 구한 2차 효율성(2nd order efficiency)을 가지면서 정도(degree)가 3인 4개의 해 중에서 1개의 해만을 최우선해로 선정하였다. NSGA-II로 도출된 최우선해의 적합성을 살펴보기 위해서, 자동보정방법인 Powell 방법과 SGA(simple genetic algorithm)를 매개변수 자동보정 방법으로 이용하고 하나의 단일목적함수로 사용해서 최적화한 결과와 비교해보았으며, 비교결과 다목적 유전자 알고리즘을 4개의 목적함수에 모두 적용해서 한번에 도출된 매개변수를 이용한 결과가 보정기간뿐만 아니라 검정기간에 대해서도 비교적 양호한 결과를 나타내는 것으로 나타났다.

A modified Genetic Algorithm using SVM for PID Gain Optimization

  • Cho, Byung-Sun;Han, So-Hee;Son, Sung-Han;Kim, Jin-Su;Park, Kang-Bak;Tsuji, Teruo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.686-689
    • /
    • 2004
  • Genetic algorithm is well known for stochastic searching method in imitating natural phenomena. In recent times, studies have been conducted in improving conventional evolutionary computation speed and promoting precision. This paper presents an approach to optimize PID controller gains with the application of modified Genetic Algorithm using Support Vector Machine (SVMGA). That is, we aim to explore optimum parameters of PID controller using SVMGA. Simulation results are given to compare to those of tuning methods, based on Simple Genetic Algorithm and Ziegler-Nicholas tuning method.

  • PDF

Optimization of PI Controller Gain for Simplified Vector Control on PMSM Using Genetic Algorithm

  • Jeong, Seok-Kwon;Wibowo, Wahyu Kunto
    • 동력기계공학회지
    • /
    • 제17권5호
    • /
    • pp.86-93
    • /
    • 2013
  • This paper proposes the used of genetic algorithm for optimizing PI controller and describes the dynamic modeling simulation for the permanent magnet synchronous motor driven by simplified vector control with the aid of MATLAB-Simulink environment. Furthermore, three kinds of error criterion minimization, integral absolute error, integral square error, and integral time absolute error, are used as objective function in the genetic algorithm. The modeling procedures and simulation results are described and presented in this paper. Computer simulation results indicate that the genetic algorithm was able to optimize the PI controller and gives good control performance of the system. Moreover, simplified vector control on permanent magnet synchronous motor does not need to regulate the direct axis component current. This makes simplified vector control of the permanent magnet synchronous motor very useful for some special applications that need simple control structure and low cost performance.

fmGA를 이용한 하수관거정비 최적화 모델 (Optimization Model for Sewer Rehabilitation Using Fast Messy Genetic Algorithm)

  • 류재나;기범준;박규홍;이차돈
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.145-154
    • /
    • 2004
  • A long-term sewer rehabilitation project consuming an enormous budget needs to be conducted systematically using an optimization skill. The optimal budgeting and ordering of priority for sewer rehabilitation projects are very important with respect to the effectiveness of investment. In this study, the sewer rehabilitation optimization model using fast-messy genetic algorithm is developed to suggest a schedule for optimal sewer rehabilitation in a subcatchment area by modifying the existing GOOSER$^{(R)}$ model having been developed using simple genetic algorithm. The sewer rehabilitation optimization model using fast-messy genetic algorithm can improve the speed converging to the optimal solution relative to GOOSER$^{(R)}$, suggesting that it is more advantageous to the sewer rehabilitation in a larger-scale subcatchment area than GOOSER.