• 제목/요약/키워드: Simple Enclosure

검색결과 44건 처리시간 0.028초

잔향실의 음장해석 (II) (Analysis of the Sound field in a Reverberation Room(II))

  • 임정빈;권영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.681-686
    • /
    • 1997
  • Foamed aluminum is well known metallic porous sound absorption material which has excellent properties of light weight and high absorbing performance. For the purpose of finding out the sound field characteristics within a simple closed cubic enclosure with foamed aluminum, analytic and experimental studies are performed. For the first time, the standing wave apparatus is used to measure absorption coefficient and impedance of the foamed aluminum. Next, the sound effects of absorption material in acoustically loaded rectangular enclosure are identified according as the foamed aluminim is to be or not.

  • PDF

밀폐공간에서의 화재에 의한 연기의 유동 이론 (The Theory of Smoke Movement by a Fire in an Enclosure)

  • 노재성;유홍선
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1996년도 학술발표회
    • /
    • pp.5-9
    • /
    • 1996
  • In foreign country such as U.S.A and Japan, considerable research has been done regarding the spread of smoke in room of fire involvement by using computer. But, in our country it has not been. So, this paper presents a detailed qualitative description of phenomena which occures during typical fire scenarios through numerical analysis. This research, in the view of field model, is focused on finding out the smoke movement and temperature distribution. And it is planned to analyze governing equation including smoke diffusion equation by numerical analysis with finite volume method and non-staggered grid system. The SIMPLE method for pressure-velocity couple and power-law scheme for convection terms are used. It shows that a plume is formed, hot plume is formed, hot plume gases impinge on the ceiling and they spread across it. then, it eventually reaches the bounding walls of the enclosure. It takes 60s for smoke to fill the enclosure.

  • PDF

발포 알루미늄 흡음재를 이용한 단순 폐공간의 내부 음장 변화에 관한 연구 (Sound Absorption Effects in a Rectangular Enclosure with the Foamed Aluminum Sheet Absorber)

  • 김상헌;손동구;오재응
    • 한국자동차공학회논문집
    • /
    • 제6권3호
    • /
    • pp.177-186
    • /
    • 1998
  • For the purpose of finding out the sound field characteristics in a cavity of a rectangular enclosure with foamed aluminum lining, analytical and experimental studies are performed with random noise input. Experimental method using two-microphone impedance tube measures the absorption coefficients and the impedances of simple sound absorbing materials. Measured acoustical parameters of the test samples are applied to the theoretical analysis to predict sound pressure field in the cavity. The sound absorp- tion effects from measurements are compared to prediction in both cases with and without foamed aluminum lining in the cavity of the rectangular enclosure.

  • PDF

Study on Natural Convection in a Rectangular Enclosure With a Heating Source

  • Bae, Kang-Youl;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.294-301
    • /
    • 2004
  • The natural convective heat transfer in a rectangular enclosure with a heating source has been studied by experiment and numerical analysis. The governing equations were solved by a finite volume method, a SIMPLE algorithm was adopted to solve a pressure term. The parameters for the numerical study are positions and surface temperatures of a heating source i.e., Y /H =0.25, 0.5, 0.75 and 11$^{\circ}C$ $\leq$ΔT$\leq$59$^{\circ}C$. The results of isotherms and velocity vectors have been represented, and the numerical results showed a good agreement with experimental values. Based on the numerical results, the mean Nusselt number of the rectangular enclosure wall could be expressed as a function of Grashof number.

개구부를 가지는 실내의 능동소음제어시스템의 최적 트랜스듀서 위치 (Optimal Transducer Positions of an Active Noise Control System with an Opening in an Enclosure)

  • 백광현
    • 한국소음진동공학회논문집
    • /
    • 제14권2호
    • /
    • pp.157-163
    • /
    • 2004
  • Optimal transducer positions are important as much as the control algorithms and hardware performance in the active noise control system. This study is similar to the past researches on the optimal transducer locations but with a far field noise source having a plane wave characteristic and the noise coming through an opening such as a window in an enclosure. Optimization techniques are used to find sets of optimal loudspeaker positions from a larger possible loudspeaker positions. Loudspeakers are placed on the surface of opening at the wall and inside of the enclosure. Using the measured acoustic transfer impedances and numerical simulations with the optimization technique, optimal positions are identified and compared. When a small number of loudspeakers are used. loudspeaker positions on the opening near the center seems to be the best place, but when a larger number of loudspeakers are used it was difficult to find simple patterns in the optimal positions. With the optimally positioned loudspeakers, optimal microphone positions are also studied.

NATURAL CONVECTION AROUND A HEAT CONDUCTING AND GENERATING SOLID BODY INSIDE A SQUARE ENCLOSURE WITH DIFFERENT THERMAL BOUNDARIES

  • NITHYADEVI, NAGARAJAN;UMADEVI, PERIYASAMY
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권4호
    • /
    • pp.459-479
    • /
    • 2015
  • Two-dimensional steady laminar natural convection around a heat conducting and generating solid body inside a square enclosure with different thermal boundaries is performed. The mathematical model is governed by the coupled equation of mass, momentum and energy. These equations are discretized by finite volume method with power-law scheme and solved numerically by SIMPLE algorithm with under-relaxation technique. Effect of Rayleigh number, temperature difference ratio of solid-fluid, aspect ratio of solid-enclosure and the thermal conductivity ratio of solid-fluid are investigated numerically for Pr = 0.7. The flow and heat transfer aspects are demonstrated in the form of streamlines and isotherms respectively.

A NUMERICAL STUDY ON MHD NATURAL CONVECTIVE HEAT TRANSFER IN AN AG-WATER NANOFLUID FILLED ENCLOSURE WITH CENTER HEATER

  • NITHYADEVI, N.;MAHALAKSHMI, T.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제21권4호
    • /
    • pp.225-244
    • /
    • 2017
  • The natural convective nanofluid flow and heat transfer inside a square enclosure with a center heater in the presence of magnetic field has been studied numerically. The vertical walls of the enclosure are cold and the top wall is adiabatic while the bottom wall is considered with constant heat source. The governing differential equations are solved by using a finite volume method based on SIMPLE algorithm. The parametric study is performed to analyze the effect of different lengths of center heater, Hartmann numbers and Rayleigh numbers. The heater effectiveness and temperature distribution are examined. The effect of all pertinent parameters on streamlines, isotherms, velocity profiles and average Nusselt numbers are presented. It is found that heat transfer increases with the increase of heater length, whereas it decreases with the increase of magnetic field effect. Furthermore, it is found that the value of Nusselt number depends strongly upon the Hartmann number for the increasing values of Rayleigh number.

밑면이 부분 가열체를 갖는 정사각 밀폐공간내의 자연대류와 화재감지에 관한 연구 (Fire Sensing Characteristics and Natural Convection in the Enclosure Partly Heated from Below)

  • 추병길
    • 한국안전학회지
    • /
    • 제5권2호
    • /
    • pp.6-16
    • /
    • 1990
  • In this paper, the natural convection in a square enclosure, partly heated from below, with two adiabatic vertical wall and one upper horigental wall is studied nomerically. In numerical study, SIMPLE(Semi-Implicit for Pressure Linked Equation) algorithems are applied for the integration of momentum and energy equation. The grid size used in this study is the coordinates of size (22$\times$22). As a result of numerical analysis, the initial fluid flow depends on the thermal diffusion, but, as time passes, the fluid flow depends on convection and buoyancy of the enclosure. In Case 1, the heating region was been in the central position of the bottom wall. In case 2, the heating region was in the left position of the bottom. In case of Case 1, the lapse time of sensing the temperature of 72$^{\circ}C$ is approximately 15 sec almost at the same time in the coordinates (6, 22), (11, 22). In case of Case 2, the lapse time in the coordinates (6, 22), (11, 22) was 27 sec, 25 sec repectively. Also in case of Case 1 or Case 2, the gradients of y-position of the two sensors are transposed each other.

  • PDF

산업용 질소발생기에 대한 청정소화설비로의 적용가능성에 관한 연구 (A Study on the Possibility of Application as a Natural Extinguishing System for $N_2$ Generator)

  • 서병택;장영근
    • 한국화재소방학회논문지
    • /
    • 제24권2호
    • /
    • pp.139-144
    • /
    • 2010
  • 본 연구에서는 산업용으로 일반적으로 사용하고 있는 질소발생기를 사용하여 할론 계열의 소화약제를 대체할 청정소화설비로 적용할 수 있는지에 대한 소화성능 실험을 간단히 수행하였다. 산업용 질소발생기의 소화성능을 분석하기 위하여 간단한 방호구역을 제작하여 실제 질소발생기에서 발생하는 질소가스를방사하면서 방호구역 내의 산소농도 변화를 실험적으로 파악하였다. 실험결과, 현재 많이 사용하고 있는 질소발생기로 방호구역 $100m^3$에 대하여 질소가스를 $5m^3$/min로 방사하면 3분 이내에 방호구역 내의 산소 농도를 15% 이내로 낮추어 질식소화가 충분히 가능하다.

파티션의 두께 및 틈새를 고려한 에어컨 캐비닛의 차음 성능 평가 및 음향 삽입 손실 향상에 대한 실험적 분석 (Evaluation for the Capability of the Sound Insulation and Experimental Analysis for the Improvement of the Sound Insertion Loss of the Air Conditioner-cabinet Considering the Thickness and Aperture of the Partition)

  • 한형석;정우승;모진용
    • 한국소음진동공학회논문집
    • /
    • 제18권2호
    • /
    • pp.263-271
    • /
    • 2008
  • Compressor radiated noise is one of the dominant noise for the outdoor unit of the air conditioner. Therefore, air conditioner makers are trying to reduce it continuously. Even though noise absorption and isolation technology are one of the important parts for reducing the noise from the compressor, it is usually treated to the substitute technology when the noise from the compressor is very difficult to reduce by the compressor noise control only. In this paper, we focus on the property of the sound insulation for the cabinet and measure it applying the theory of the sound transmission loss and insertion loss of the simple enclosure. The insertion loss is evaluated by the experiments according to the thickness and the aperture of the partition in the cabinet.