• Title/Summary/Keyword: Similarity registration

Search Result 67, Processing Time 0.02 seconds

Brain MR Multimodal Medical Image Registration Based on Image Segmentation and Symmetric Self-similarity

  • Yang, Zhenzhen;Kuang, Nan;Yang, Yongpeng;Kang, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1167-1187
    • /
    • 2020
  • With the development of medical imaging technology, image registration has been widely used in the field of disease diagnosis. The registration between different modal images of brain magnetic resonance (MR) is particularly important for the diagnosis of brain diseases. However, previous registration methods don't take advantage of the prior knowledge of bilateral brain symmetry. Moreover, the difference in gray scale information of different modal images increases the difficulty of registration. In this paper, a multimodal medical image registration method based on image segmentation and symmetric self-similarity is proposed. This method uses modal independent self-similar information and modal consistency information to register images. More particularly, we propose two novel symmetric self-similarity constraint operators to constrain the segmented medical images and convert each modal medical image into a unified modal for multimodal image registration. The experimental results show that the proposed method can effectively reduce the error rate of brain MR multimodal medical image registration with rotation and translation transformations (average 0.43mm and 0.60mm) respectively, whose accuracy is better compared to state-of-the-art image registration methods.

Similarity Measurement using Gabor Energy Feature and Mutual Information for Image Registration

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.693-701
    • /
    • 2011
  • Image registration is an essential process to analyze the time series of satellite images for the purpose of image fusion and change detection. The Mutual Information (MI) is commonly used as similarity measure for image registration because of its robustness to noise. Due to the radiometric differences, it is not easy to apply MI to multi-temporal satellite images using directly the pixel intensity. Image features for MI are more abundantly obtained by employing a Gabor filter which varies adaptively with the filter characteristics such as filter size, frequency and orientation for each pixel. In this paper we employed Bidirectional Gabor Filter Energy (BGFE) defined by Gabor filter features and applied the BGFE to similarity measure calculation as an image feature for MI. The experiment results show that the proposed method is more robust than the conventional MI method combined with intensity or gradient magnitude.

Co-registration of Multiple Postmortem Brain Slices to Corresponding MRIs Using Voxel Similarity Measures and Slice-to-Volume Transformation

  • Kim Tae-Seong
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.4
    • /
    • pp.231-241
    • /
    • 2005
  • New methods to register multiple hemispheric slices of the postmortem brain to anatomically corresponding in-vivo MRI slices within a 3D volumetric MRI are presented. Gel-embedding and fiducial markers are used to reduce geometrical distortions in the postmortem brain volume. The registration algorithm relies on a recursive extraction of warped MRI slices from the reference MRI volume using a modified non-linear polynomial transformation until matching slices are found. Eight different voxel similarity measures are tested to get the best co-registration cost and the results show that combination of two different similarity measures shows the best performance. After validating the implementation and approach through simulation studies, the presented methods are applied to real data. The results demonstrate the feasibility and practicability of the presented co­registration methods, thus providing a means of MR signal analysis and histological examination of tissue lesions via co­registered images of postmortem brain slices and their corresponding MRI sections. With this approach, it is possible to investigate the pathology of a disease through both routinely acquired MRls and postmortem brain slices, thus improving the understanding of the pathological substrates and their progression.

An Efficient Image Registration Based on Multidimensional Intensity Fluctuation (다차원 명암도 증감 기반 효율적인 영상정합)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.287-293
    • /
    • 2012
  • This paper presents an efficient image registration method by measuring the similarity, which is based on multi-dimensional intensity fluctuation. Multi-dimensional intensity which considers 4 directions of the image, is applied to reflect more properties in similarity decision. And an intensity fluctuation is also applied to measure comprehensively the similarity by considering a change in brightness between the adjacent pixels of image. The normalized cross-correlation(NCC) is calculated by considering an intensity fluctuation to each of 4 directions. The 5 correlation coefficients based on the NCC have been used to measure the registration, which are total NCC, the arithmetical mean and a simple product on the correlation coefficient of each direction and on the normalized correlation coefficient by the maximum NCC, respectively. The proposed method has been applied to the problem for registrating the 22 face images of 243*243 pixels and the 9 person images of 500*500 pixels, respectively. The experimental results show that the proposed method has a superior registration performance that appears the image properties well. Especially, the arithmetical mean on the correlation coefficient of each direction is the best registration measure.

Hierarchical Organ Segmentation using Location Information based on Multi-atlas in Abdominal CT Images (복부 컴퓨터단층촬영 영상에서 다중 아틀라스 기반 위치적 정보를 사용한 계층적 장기 분할)

  • Kim, Hyeonjin;Kim, Hyeun A;Lee, Han Sang;Hong, Helen
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.12
    • /
    • pp.1960-1969
    • /
    • 2016
  • In this paper, we propose an automatic hierarchical organ segmentation method on abdominal CT images. First, similar atlases are selected using bone-based similarity registration and similarity of liver, kidney, and pancreas area. Second, each abdominal organ is roughly segmented using image-based similarity registration and intensity-based locally weighted voting. Finally, the segmented abdominal organ is refined using mask-based affine registration and intensity-based locally weighted voting. Especially, gallbladder and pancreas are hierarchically refined using location information of neighbor organs such as liver, left kidney and spleen. Our method was tested on a dataset of 12 portal-venous phase CT data. The average DSC of total organs was $90.47{\pm}1.70%$. Our method can be used for patient-specific abdominal organ segmentation for rehearsal of laparoscopic surgery.

Unsupervised Non-rigid Registration Network for 3D Brain MR images (3차원 뇌 자기공명 영상의 비지도 학습 기반 비강체 정합 네트워크)

  • Oh, Donggeon;Kim, Bohyoung;Lee, Jeongjin;Shin, Yeong-Gil
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.5
    • /
    • pp.64-74
    • /
    • 2019
  • Although a non-rigid registration has high demands in clinical practice, it has a high computational complexity and it is very difficult for ensuring the accuracy and robustness of registration. This study proposes a method of applying a non-rigid registration to 3D magnetic resonance images of brain in an unsupervised learning environment by using a deep-learning network. A feature vector between two images is produced through the network by receiving both images from two different patients as inputs and it transforms the target image to match the source image by creating a displacement vector field. The network is designed based on a U-Net shape so that feature vectors that consider all global and local differences between two images can be constructed when performing the registration. As a regularization term is added to a loss function, a transformation result similar to that of a real brain movement can be obtained after the application of trilinear interpolation. This method enables a non-rigid registration with a single-pass deformation by only receiving two arbitrary images as inputs through an unsupervised learning. Therefore, it can perform faster than other non-learning-based registration methods that require iterative optimization processes. Our experiment was performed with 3D magnetic resonance images of 50 human brains, and the measurement result of the dice similarity coefficient confirmed an approximately 16% similarity improvement by using our method after the registration. It also showed a similar performance compared with the non-learning-based method, with about 10,000 times speed increase. The proposed method can be used for non-rigid registration of various kinds of medical image data.

Deformable image registration in radiation therapy

  • Oh, Seungjong;Kim, Siyong
    • Radiation Oncology Journal
    • /
    • v.35 no.2
    • /
    • pp.101-111
    • /
    • 2017
  • The number of imaging data sets has significantly increased during radiation treatment after introducing a diverse range of advanced techniques into the field of radiation oncology. As a consequence, there have been many studies proposing meaningful applications of imaging data set use. These applications commonly require a method to align the data sets at a reference. Deformable image registration (DIR) is a process which satisfies this requirement by locally registering image data sets into a reference image set. DIR identifies the spatial correspondence in order to minimize the differences between two or among multiple sets of images. This article describes clinical applications, validation, and algorithms of DIR techniques. Applications of DIR in radiation treatment include dose accumulation, mathematical modeling, automatic segmentation, and functional imaging. Validation methods discussed are based on anatomical landmarks, physical phantoms, digital phantoms, and per application purpose. DIR algorithms are also briefly reviewed with respect to two algorithmic components: similarity index and deformation models.

Fast and Accurate Rigid Registration of 3D CT Images by Combining Feature and Intensity

  • June, Naw Chit Too;Cui, Xuenan;Li, Shengzhe;Kim, Hak-Il;Kwack, Kyu-Sung
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Computed tomography (CT) images are widely used for the analysis of the temporal evaluation or monitoring of the progression of a disease. The follow-up examinations of CT scan images of the same patient require a 3D registration technique. In this paper, an automatic and robust registration is proposed for the rigid registration of 3D CT images. The proposed method involves two steps. Firstly, the two CT volumes are aligned based on their principal axes, and then, the alignment from the previous step is refined by the optimization of the similarity score of the image's voxel. Normalized cross correlation (NCC) is used as a similarity metric and a downhill simplex method is employed to find out the optimal score. The performance of the algorithm is evaluated on phantom images and knee synthetic CT images. By the extraction of the initial transformation parameters with principal axis of the binary volumes, the searching space to find out the parameters is reduced in the optimization step. Thus, the overall registration time is algorithmically decreased without the deterioration of the accuracy. The preliminary experimental results of the study demonstrate that the proposed method can be applied to rigid registration problems of real patient images.

Wavelet Transform based Image Registration using MCDT Method for Multi-Image

  • Lee, Choel;Lee, Jungsuk;Jung, Kyedong;Lee, Jong-Yong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.36-41
    • /
    • 2015
  • This paper is proposed a wavelet-based MCDT(Mask Coefficient Differential and Threshold) method of image registration of Multi-images contaminated with visible image and infrared image. The method for ensure reliability of the image registration is to the increase statistical corelation as getting the common feature points between two images. The method of threshold the wavelet coefficients using derivatives of the wavelet coefficients of the detail subbands was proposed to effectively registration images with distortion. And it can define that the edge map. Particularly, in order to increase statistical corelation the method of the normalized mutual information. as similarity measure common feature between two images was selected. The proposed method is totally verified by comparing with the several other multi-image and the proposed image registration.

Mutual Information-based Circular Template Matching for Image Registration (영상등록을 위한 Mutual Information 기반의 원형 템플릿 정합)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.547-557
    • /
    • 2014
  • This paper presents a method for designing circular template used in similarity measurement for image registration. Circular template has translation and rotation invariant property, which results in correct matching of control points for image registration under the condition of translation and rotation between reference and sensed images. Circular template consisting of the pixels located on the multiple circumferences of the circles whose radii vary from zero to a certain distance, is converted to two-dimensional Discrete Polar Coordinate Matrix (DPCM), whose elements are the pixels of the circular template. For sensed image, the same type of circular template and DPCM are created by rotating the circular template repeatedly by a certain degree in the range between 0 and 360 degrees and then similarity is calculated using mutual information of the two DPCMs. The best match is determined when the mutual information for each rotation angle at each pixel in search area is maximum. The proposed algorithm was tested using KOMPSAT-2 images acquired at two different times and the results indicate high accurate matching performance under image rotation.