본 논문에서는 개인화 서비스를 제공하기 위해 책, 음악, 영화 등과 같이 단일 항목을 추천하는 기존 방법의 한계를 극복하고, 패션, 요리 등과 같이 연관성에 따른 항목의 조합, 즉 그룹을 추천하는 방법을 다룬다. 협업 필터링은 사용자 간의 유사도를 측정하여 비슷한 성향의 사용자들이 선택한 항목을 추천하는 방법이며, 사용자의 성향을 예측할 수 있다는 장점이 있다. 본 논문에서는 이러한 협업 필터링과 연관 규칙을 바탕으로 빈발 항목 집합을 생성하고, 그룹 간의 유사도에 따라 그룹을 추천하는 알고리즘을 제안한다. 제안하는 방법의 타당성을 검증하기 위하여 의류 전자상거래에서 4개월 동안 소비자가 구매한 목록 데이터로 실험을 수행하였다.
본 논문에서는 패턴분류문제를 해결하기 위한 새로운 무감독학습 신경망 및 경쟁학습 알고리즘을 제한한다. 제아하는 신경망은 입력 데이터의 군집을 분류하기 위한 거리측도로서 군집들 상호간의 상대유사도(relative similarity)를 기반으로 하고 있다. 이러한 까닭에 제안하는 신경망과 알고리즘을 상대유사 신경망 (relative similarity network; RSN)및 학습 알고리즘이라 이름한다. 상대유사도를 정의하고 가중벡터 학습 규칙을 구성함으로써, RSN의 구조를 설계하고 학습알고리즘을 구현하기 의한 의사코드를 기술한다. 일반적인 패턴분류에 RSN을 적용한 결과, 초기 학습률이 없음에도 불구하고 기존이 경쟁학습 신경망인 WTAdlsk SOM고 동등한 성능을 나타내었다. 반면 기존 경쟁학습 신경망의 분류성능이 저하되었던 군집이 경걔가 불분명한 패턴, 그리고 군집이 밀집도와 군집의 크기가 다른 패턴들에 대한 실험에서는 기존의 경쟁학습망보다 효과적인 분류결과를 나타내었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권10호
/
pp.4176-4197
/
2020
Botnet is a type of dangerous malware. Botnet attack with a collection of bots attacking a similar target and activity pattern is called bot group activities. The detection of bot group activities using intrusion detection models can only detect single bot activities but cannot detect bots' behavioral relation on bot group attack. Detection of bot group activities could help network administrators isolate an activity or access a bot group attacks and determine the relations between bots that can measure the correlation. This paper proposed a new model to measure the similarity between bot activities using the intersections-probability concept to define bot group activities called as B-Corr Model. The B-Corr model consisted of several stages, such as extraction feature from bot activity flows, measurement of intersections between bots, and similarity value production. B-Corr model categorizes similar bots with a similar target to specify bot group activities. To achieve a more comprehensive view, the B-Corr model visualizes the similarity values between bots in the form of a similar bot graph. Furthermore, extensive experiments have been conducted using real botnet datasets with high detection accuracy in various scenarios.
This paper proposes a method of detecting the license plates of vehicles. The proposed technology applicable to different formats of license plates detects the numbers by standardizing the images at edge points. Specifically, in accordance with the format of each license plate, the technology captures the image in the character segment, and compares it against the sample model to derive their similarity and identify the numbers. Characters with high similarities are used to form a group of candidates and to extract the final characters. Analyzing the experimental results found the similarity of the extracted characters exceeded 90%, whereas that of less identifiable numbers was markedly lower. Still, the accuracy of the extracted characters with the highest similarity was over 80%. The proposed technology is applicable to extracting the character patterns of certain formats in diverse and useful ways.
인삼의 부위별 진세노사이드 패턴 유사성과 상관관계를 알아보고자 본 시험을 수행하였다. 진세노사이드 단위함량과 총함량은 고풍이 각각 18.9 mg/g, 596 mg/g으로 가장 높았고 연풍, 금풍, 선풍이 뒤를 이었으며, 천풍은 각각 8.0 mg/g, 209.5 mg/g으로 고풍의 절반에도 미치지 못하였다. 부위별로 보면 뇌두의 진세노사이드 단위함량과 총함량은 연풍이 가장 높았으며, 동체와 지근 및 세근에서는 고풍이 높았다. 뿌리와 각 부위의 진세노사이드 패턴 유사성은 지근과 뇌두가 각기 0.95, 0.94로 높았으며 동체와 세근은 각기 0.78, 0.80으로 다소 낮았다. 지근에서 품종별 진세노사이드 패턴 유사성을 보면 천풍, 연풍, 고풍, 금풍이 각기 0.98, 0.98, 0.96, 0.98로 아주 높았으며, 선풍은 0.87로 다소 낮았다. 뿌리와 각 부 위의 진세노사이드 상관계수는 지근에서 0.843으로 가장 높았으며 동체, 세근, 뇌두 순으로 낮아졌다. 또한 단위함량과 총 함량의 상관계수는 0.933으로 매우 높게 나타났다.
대기전력(Standby power) 소모가 발생하는 첫 번째 요인은 전원에서 IC로 들어오면서 거쳐야하는 기동전압 때문이며 나머지 하나는 IC가 동작할 때의 전류 때문이다. 본 논문에서는 대기전력 상태와 차단 시점의 패턴분석을 통해서 자동 On/Off할 수 있도록 하는 간단한 모듈장치 구성과 알고리즘 적용에 목적을 두었다. 이를 위해서 전력 신호분석과 모델링에 근간을 두었으며 대기전력 절감을 위해서 On/Off 차단기준을 마련했다. On/Off 차단 시점을 찾기 위해서 $1^{st}$ SCS와 $2^{nd}$ SCS의 차분값(subtraction value), 그리고 콘센트로부터 유입된 초당 샘플링 계수에 대한 중간값(median value)을 중요한 파라미터로써 정의한 다음 대기전력 상태에서의 유사그룹 및 유력패턴 그룹 생성 알고리즘을 수행했다.
Objectives : Cnidii Fructus is prescribed as the fruit of Cnidium monnieri (L.) Cusson or Torilis japonica (Houtt.) DC. in Korea pharmacopoeia. Although there are differences in the composition of useful components, two species have been used without distinction. In order to discriminate them, DNA sequencing and taste pattern analysis were used in this study. Methods : Primers ITS 1 and ITS 4 were used to amplify the intergenic transcribed spacer(ITS) region of nuclear ribosomal DNA from seven T. japonica and six C. monnieri samples. Taste pattern of samples were measured by using taste-sensing system SA402B equipped with five foodstuff sensors(CT0, C00, AAE, CA0, and AE1). The five initial taste(sourness, bitterness, astringency, umami, and saltiness) and three aftertaste(aftertaste of bitterness, astringency, and umami) of two species were compared. Results : According to the results of ITS region sequence analysis, two species showed 94 base pairs differences. The similarity of two sequences was 85%. From the taste pattern analysis, sourness, bitterness, aftertaste of bitterness(aftertaste-B), and umami showed a different pattern. Especially, bitterness and aftertaste-B of C. monnieri were significantly higher than T. japonica. In addition, two species were shown to have two markedly different clustering by these two flavors. Conclusion : T. japonica and C. monnieri were effectively discriminated using DNA sequencing and taste pattern analysis. These methods can be used to identify the origin of traditional medicine in order to maintain therapeutic efficacy.
데이터 마이닝은 대용량의 데이터에 숨겨진 의미있고 유용한 패턴과 상관관계를 추출하여 의사결정에 활용하는 작업이다. 그 중에서도 고객 트랜잭션의 데이터베이스에서 아이템(item) 사이에 존재하는 연관규칙을 찾는 것은 중요한 일이 되었다. Apriori 알고리즘 이후 연관규칙을 찾기 위해 대용량의 데이터베이스로부터 압축된 의미있는 정보를 저장하기 위한 데이터 구조와 알고리즘들이 많이 제안되어 왔다. 연관규칙을 발견하기 위한 기존의 연구들은 모든 규칙을 찾아내지만, 사람이 분석하기에 너무 많은 규칙이 생성되기 때문에 규칙을 분석하기 위한 일 또한 많은 과정을 거쳐야 한다. 본 논문에서는 빈발 패턴 네트워크(Frequent Pattern Network)라 부르는 자료 구조를 제안하고 이를 활용하였다. 네트워크는 정점과 간선으로 구성되며 정점은 아이템을 표현하고, 간선은 두 아이템 집합을 표현한다. 아이템의 빈도수를 이용하여 빈발 패턴 네트워크를 구성하고, 아이템 사이의 유사도를 측정한다. 그리고 클러스터 내의 아이템과는 유사도가 높고, 다른 클러스터의 아이템과는 유사도가 낮도록 클러스터를 생성한다. 클러스터를 이용해 연관규칙을 생성하고 실험을 통해 Apriori와 FP Growth 알고리즘과의 성능을 비교를 하였다. 그 결과 빈발 패턴 네트워크에서 신뢰도 유사도를 이용하는 것이 클러스터의 정확성을 높여줌을 볼 수 있었다. 그리고 전통적인 방법과 비교를 통해 빈발 패턴 네트워크를 이용하는 것이 최소지지도에 유연성을 가짐을 알 수 있었다.
Multivariate statistical approaches to classify sampling sites with measuring their similarity by water quality data and understand the characteristics of classified clusters have been discussed for the optimal water quality monitering network. For empirical study, data of two years (2005, 2006) at the 9 sampling sites with the combination of 2 depth levels and 7 important variables related to water quality is collected in Yongdam reservoir. The similarity among sampling sites is measured with Euclidean distances of water quality related variables and they are classified by hierarchical clustering method. The clustered sites are discussed with principal component variables in the view of the geographical characteristics of them and reducing the number of measuring sites. Nine sampling sites are clustered as follows; One cluster of 5, 6, and 7 sampling sites shows the characteristic of low water depth and main stream of water. The sites of 2 and 4 are clustered into the same group by characteristics of hydraulics which come from that of main stream. But their changing pattern of water quality looks like different since the site of 2 is near to dam. The sampling sites of 3, 8, and 9 are individually positioned due to the different tributary.
Multivariate statistical approaches to classify sampling sites with measuring their similarity by water quality data. For empirical study, data of two years at the 9 sampling sites with the combination of 2 depth levels and 7 important variables related to water quality is collected in reservoir. The similarity among sampling sites is measured with Euclidean distances of water quality related variables and they are classified by hierarchical clustering method. The clustered sites are discussed with principal component variables in the view of the geographical characteristics of them and reducing the number of measuring sites. Nine sampling sites are clustered as follows; One cluster of 5, 6, and 7 sampling sites shows the characteristic of low water depth and main stream of water. The sites of 2 and 4 are clustered into the same group by characteristics of hydraulics which come from that of main stream. But their changing pattern of water quality looks like different since the site of 2 is near to dam. The sampling sites of 3, 8, and 9 are individually positioned due to the different tributary.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.