The purpose of this study is to evaluate the performance of collaborative filtering recommender algorithms for better prediction accuracy of the customer's preference. The accuracy of customer's preference prediction is compared through the MAE of neighborhood based collaborative filtering algorithm and correspondence mean algorithm. It is analyzed by using MovieLens 1 Million dataset in order to experiment with the prediction accuracy of the algorithms. For similarity, weight used in both algorithms, commonly, Pearson's correlation coefficient and vector similarity which are used generally were utilized, and as a result of analysis, we show that the accuracy of the customer's preference prediction of correspondence mean algorithm is superior. Pearson's correlation coefficient and vector similarity used in two algorithms are calculated using the preference rating of two customers' co-rated movies, and it shows that similarity weight is overestimated, where the number of co-rated movies is small. Therefore, it is intended to increase the accuracy of customer's preference prediction through expanding the number of the existing co-rated movies.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
v.9
no.2
/
pp.1073-1076
/
2005
Since the size of biosequence database grows exponentially every year, it becomes impractical to use Smith-Waterman algorithm for exact sequence similarity search. For fast sequence similarity search, researchers have been proposed heuristic methods that use the frequency of characters in subsequences. These methods have the defect that different sequences are treated as the same sequence. Because of using only the frequency of characters, the accuracy of these methods are lower than Smith-Waterman algorithm. In this paper, we propose an algorithm which processes query efficiently by indexing the frequency of characters including the positional information of characters in subsequences. The experiments show that our algorithm improve the accuracy of sequence similarity search approximately 5${\sim}$20% than heuristic algorithms using only the frequency of characters.
Searching for gene products which have similar biological functions are crucial for bioinformatics. Modern day biological databases provide the functional description of gene products using Gene Ontology(GO). In this paper, we propose a technique for semantic similarity search for gene products using the GO annotation information. For this purpose, an information-theoretic measure for semantic similarity between gene products is defined. And an algorithm for semantic similarity search using this measure is proposed. We adapt Fagin's Threshold Algorithm to process the semantic similarity query as follows. First, we redefine the threshold for our measure. This is because our similarity function is not monotonic. Then cluster-skipping and the access ordering of the inverted index lists are proposed to reduce the number of disk accesses. Experiments with real GO and annotation data show that GORank is efficient and scalable.
We live in the era of unlimited design competition. As the importance of design is increasing in all areas including marketing, each country does its best effort on design development. However, the preparation on protecting interior design rights by intellectual property laws(IPLs) has not been enough even though they occupy an important place in the design field. It is not quite easy to make a judgement on the similarity between two images having a single common factor because the factors which are composed of interior design have complicated interactive relations between them. From the IPLs point of view, designs with the similar overall appearance are decided to be similar. Objective evaluation criteria not only for designers but also for design examiners and judges are required in order to protect interior design by the IPLs. The objective of this study is the analysis of the possibility that a computer algorithm method can be useful to decide the similarity of interior design images. According to this study, it is realized that the Img2 which is one of content-based image retrieval computer programs can be utilized to measure the degree of the similarity. The simulation results of three descriptors(CEDD, FCTH, JCD) in the Img2 showed the high degree of similar patterns compared with the results of perceptual judgment by observers. In particular, it was verified that the Img2 has high availability on interior design images with a high score of similarity below 60 which are perceptually judged by observers.
We proposed similarity detection method of the video frame data that extracts the feature data of own video frame and creates the 1-D signal in this paper. We get the similar frame boundary and make the representative frames within the frame boundary to extract the similarity extraction between video. Representative frames make blurring frames and extract the feature data using DOG values. Finally, we convert the feature data into the 1-D signal and compare the contents similarity. The experimental results show that the proposed algorithm get over 0.9 similarity value against noise addition, rotation change, size change, frame delete, frame cutting.
Images are an important element in patents and many experts use images to analyze a patent or to check differences between patents. However, there is little research on image analysis for patents partly because image processing is an advanced technology and typically patent images consist of visual parts as well as of text and numbers. This study suggests two methods for using image processing; the Scale Invariant Feature Transform(SIFT) algorithm and Optical Character Recognition(OCR). The first method which works with SIFT uses image feature points. Through feature matching, it can be applied to calculate the similarity between documents containing these images. And in the second method, OCR is used to extract text from the images. By using numbers which are extracted from an image, it is possible to extract the corresponding related text within the text passages. Subsequently, document similarity can be calculated based on the extracted text. Through comparing the suggested methods and an existing method based only on text for calculating the similarity, the feasibility is achieved. Additionally, the correlation between both the similarity measures is low which shows that they capture different aspects of the patent content.
The Journal of Korean Institute of Information Technology
/
v.17
no.12
/
pp.29-38
/
2019
A path prediction method using lifelog requires a large amount of training data for accurate path prediction, and the path prediction performance is degraded when the training data is insufficient. The lack of training data can be solved using data of other users having similar user movement patterns. Therefore, this paper proposes a path prediction algorithm based on user similarity. The proposed algorithm learns the path in a triple grid pattern and measures the similarity between users using the cosine similarity technique. Then, it predicts the path with applying measured similarity to the learned model. For the evaluation, we measure and compare the path prediction accuracy of proposed method with the existing algorithms. As a result, the proposed method has 66.6% accuracy, and it is evaluated that its accuracy is 1.8% higher than other methods.
Journal of Korean Institute of Industrial Engineers
/
v.31
no.1
/
pp.1-9
/
2005
This paper proposes the heuristic algorithm for the generalized GT problems to consider the restrictions which are given the number of machine cell and maximum number of machines in machine cell as well as minimum number of machines in machine cell. This approach is split into two phase. In the first phase, we use the similarity coefficient which proposes and calculates the similarity values about each pair of all machines and sort these values descending order. If we have a machine pair which has the largest similarity coefficient and adheres strictly to the constraint about birds of a different feather (BODF) in a machine cell, then we assign the machine to the machine cell. In the second phase, we assign parts into machine cell with the smallest number of exceptional elements. The results give a machine-part grouping. The proposed algorithm is compared to the Modified p-median model for machine-part grouping.
Korean Journal of Computational Design and Engineering
/
v.16
no.1
/
pp.21-30
/
2011
Similarity assessment of a CAD model is one of important issues from the aspect of model re-using. In real practice, many new mechanical parts are designed by modifying existing ones. The reuse of part enables to save design time and efforts for the designers. Design time would be further reduced if there were an efficient way to search for existing similar designs. This paper proposes an efficient algorithm of similarity assessment for mechanical part model with design history embedded within the CAD model. Since it is possible to retrieve the design history and detailed-feature information using CAD API, we can obtain an accurate and reliable assessment result. For our purpose, our assessment algorithm can be divided by two: (1) we select suitable parts by comparing MSG (Model Signature Graph) extracted from a base feature of the required model; (2) detailed-features' similarities are assessed with their own attributes and reference structures. In addition, we also propose a indexing method for managing a model database in the last part of this article.
Proceedings of the Korean Information Science Society Conference
/
2006.10c
/
pp.83-87
/
2006
Similarity search in moving object trajectories is an active area of research. In this paper, we introduce a new concept of measure that computes spatial distance (similarity) between two trajectories of moving objects on road networks. In addition, we propose an algorithm that generates a sequence of matching edge pairs for two trajectories that ate to be compared and computes spatial distance between them which is non Euclidian in nature. With an example, we explain how our algorithm works to show spatial similarity between trajectories of moving objects in spatial network.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.