• Title/Summary/Keyword: Similar Image

Search Result 2,138, Processing Time 0.039 seconds

A Rotation Invariant Image Retrieval with Local Features

  • You, Hee-Jun;Shin, Dae-Kyu;Kim, Dong-Hoon;Kim, Hyun-Sool;Park, Sang-Hui
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.332-338
    • /
    • 2003
  • Content-based image retrieval is the research of images from database, that are visually similar to given image examples. Gabor functions and Gabor filters are regarded as excellent methods for feature extraction and texture segmentation. However, they have a disadvantage not to perform well in case of a rotated image because of its direction-oriented filter. This paper proposes a method of extracting local texture features from blocks with central interest points detected in an image and a rotation invariant Gabor wavelet filter. We also propose a method of comparing pattern histograms of features classified by VQ (Vector Quantization) among images.

Image segmentation preserving semantic object contours by classified region merging (분류된 영역 병합에 의한 객체 원형을 보존하는 영상 분할)

  • 박현상;나종범
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.661-664
    • /
    • 1998
  • Since the region segmentation at high resolution contains most of viable semantic object contours in an image, the bottom-up approach for image segmentation is appropriate for the application such as MPEG-4 which needs to preserve semantic object contours. However, the conventioal region merging methods, that follow the region segmentation, have poor performance in keeping low-contrast semantic object contours. In this paper, we propose an image segmentation algorithm based on classified region merging. The algorithm pre-segments an image with a large number of small regions, and also classifies it into several classes having similar gradient characteristics. Then regions only in the same class are merged according to the boundary weakness or statisticsal similarity. The simulation result shows that the proposed image segmentation preserves semantic object contours very well even with a small number of regions.

  • PDF

Accelerating the Retinex Algorithm with CUDA

  • Seo, Hyo-Seok;Kwon, Oh-Young
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.3
    • /
    • pp.323-327
    • /
    • 2010
  • Recently, the television market trend is change to HD television and the need of the study on HD image enhancement is increased rapidly. To enhancement of image quality, the retinex algorithm is commonly used. That's why we studied how to accelerate the retinex algorithm with CUDA on GPGPU (general purpose graphics processing unit). Calculating average part in retinex algorithm is similar to pyramidal calculation. We parallelize this recursive pyramidal average calculating for all layers, map the average data into the 2D plane and reduce the calculating time dramatically. Sequential C code takes 8948ms to get the average values for all layers in $1024{\times}1024$ image, but proposed method takes only only about 0.9ms for the same image. We are going to study about the real-time HD video rendering and image enhancement.

An Edge-Based Adaptive Method for Removing High-Density Impulsive Noise from an Image While Preserving Edges

  • Lee, Dong-Ho
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.564-571
    • /
    • 2012
  • This paper presents an algorithm for removing high-density impulsive noise that generates some serious distortions in edge regions of an image. Although many works have been presented to reduce edge distortions, these existing methods cannot sufficiently restore distorted edges in images with large amounts of impulsive noise. To solve this problem, this paper proposes a method using connected lines extracted from a binarized image, which segments an image into uniform and edge regions. For uniform regions, the existing simple adaptive median filter is applied to remove impulsive noise, and, for edge regions, a prediction filter and a line-weighted median filter using the connected lines are proposed. Simulation results show that the proposed method provides much better performance in restoring distorted edges than existing methods provide. When noise content is more than 20 percent, existing algorithms result in severe edge distortions, while the proposed algorithm can reconstruct edge regions similar to those of the original image.

IMAGE CLASSIFICATION OF HIGH RESOLTION MULTISPECTRAL IMAGERY VIA PANSHARPENING

  • Lee, Sang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.18-21
    • /
    • 2008
  • Lee (2008) proposed the pansharpening method to reconstruct at the higher resolution the multispectral images which agree with the spectral values observed from the sensor of the lower resolution values. It outperformed over several current techniques for the statistical analysis with quantitative measures, and generated the imagery of good quality for visual interpretation. However, if a small object stretches over two adjacent pixels with different spectral characteristics at the lower resolution, the pixels of the object at the higher resolution may have different multispectral values according to their location even though they have a same intensity in the panchromatic image of higher resolution. To correct this problem, this study employed an iterative technique similar to the image restoration scheme of Point-Jacobian iterative MAP estimation. The effect of pansharpening on image segmentation/classification was assessed for various techniques. The method was applied to the IKONOS image acquired over the area around Anyang City of Korea.

  • PDF

A Study on the Image Filter using Neuro-Fuzzy (뉴로-퍼지를 이용한 영상 필터 연구)

  • 변오성;이철희;문성룡;임기영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.83-86
    • /
    • 2001
  • In this paper, it study about the image filter applied the hybrid fuzzy membership function to the neuro-fuzzy system. Here, this system applys the genetic algorithm in order to obtain the optimal image as the iteration carry for making the data value in the error. It is removed the included noise in an image using the proposed image filter and compared the proposed image filter performance with the other filters using MATLAB. And it is found that the proposed filter performance is superior to the other filters which has the similar structure through the images. To show the superior ability, it is compared with MSE and SNR for images.

  • PDF

Image Retrieval Using Space-Distributed Average Coordinates

  • H. W. Chang;E. K. Kang;Park, J. S.
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.894-897
    • /
    • 2000
  • In this paper, we present a content-based image retrieval method that is less sensitive to some rotations and translations of an image by using the fuzzy region segmentation. The algorithm retrieves similar images from a database using the two features of color and color spatial information. To index images, we use the average coordinates of color distribution to obtain the spatial information of each segmented region. Furthermore, we also propose the alternative to the ripple phenomenon, which is occurred in the conventional fuzzy region segmentation algorithm.

  • PDF

Trademark Image Retrieval System (상표 영상 검색 시스템)

  • Shin, Seong-Yoon;Baik, Seong-Eun;Pyo, Seong-Bae;Rhee, Yang-Won
    • KSCI Review
    • /
    • v.15 no.1
    • /
    • pp.185-190
    • /
    • 2007
  • An image retrieval system is a piece of software that searches identical or similar images based on various image-specific features. This paper proposes a trademark image retrieval system that uses image colors and forms. In the proposed system, input images are segmented into several other regions, and color distribution histograms for different regions are extracted for use as color information. The proposed system uses form information through the preprocessing process such as boundary surface extraction, centroid extraction, angular sampling and, and through calculating the sums of the distances between the centroid and the boundary surfaces, standard deviations, and the ratios between long and short axes. Like this, the color and form information extracted is used to perform retrieval through measuring similarity.

  • PDF

Region-Based Gradient and Its Application to Image Segmentation

  • Kim, Hyoung Seok
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.108-113
    • /
    • 2018
  • In this study, we introduce a new image gradient computation based on understanding of image generation. Most images consist of groups of pixels with similar color information because the images are generally obtained by taking a picture of the real world. The general gradient operator for an image compares only the neighboring pixels and cannot obtain information about a wide area, and there is a risk of falling into a local minimum problem. Therefore, it is necessary to attempt to introduce the gradient operator of the interval concept. We present a bow-tie gradient by color values of pixels on bow-tie region of a given pixel. To confirm the superiority of our study, we applied our bow-tie gradient to image segmentation algorithms for various images.

Brain MR Multimodal Medical Image Registration Based on Image Segmentation and Symmetric Self-similarity

  • Yang, Zhenzhen;Kuang, Nan;Yang, Yongpeng;Kang, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1167-1187
    • /
    • 2020
  • With the development of medical imaging technology, image registration has been widely used in the field of disease diagnosis. The registration between different modal images of brain magnetic resonance (MR) is particularly important for the diagnosis of brain diseases. However, previous registration methods don't take advantage of the prior knowledge of bilateral brain symmetry. Moreover, the difference in gray scale information of different modal images increases the difficulty of registration. In this paper, a multimodal medical image registration method based on image segmentation and symmetric self-similarity is proposed. This method uses modal independent self-similar information and modal consistency information to register images. More particularly, we propose two novel symmetric self-similarity constraint operators to constrain the segmented medical images and convert each modal medical image into a unified modal for multimodal image registration. The experimental results show that the proposed method can effectively reduce the error rate of brain MR multimodal medical image registration with rotation and translation transformations (average 0.43mm and 0.60mm) respectively, whose accuracy is better compared to state-of-the-art image registration methods.