• Title/Summary/Keyword: Silver nitrate solution

Search Result 81, Processing Time 0.027 seconds

Recovery of Silver from the Spent Solution Generated from Electrochemical Oxidation of Radioactive Wastes (放射性 폐기물의 전기화학적 분해 폐액으로부터 銀의 回收)

  • 문제권;정종훈;오원진;이일희
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.22-28
    • /
    • 2001
  • Recovery of silver in the spent solution generated from MEO(Mediated Electrochemical Oxidation) process, which is a process to decompose radioactive organic mixed wastes at low temperature, was performed using chemical method. Silver nitrate in 5M nitric acid solution could be completely recovered as AgCl by using 1% excess of the stoichiometric HCl equivalents. Then, AgCl was transformed to Ag metal by reduction reaction with hydrogen peroxide under alkaline media. The optimum pH for the reduction to silver metal was found to be in the range of 12.8∼13.0.

  • PDF

A STUDY ON THE REDUCTION OF GALVANIC CURRENT BETWEEN AMALGAM AND GOLD ALLOY WITH VARIOUS CHEMICAL AGENTS (수종 아말감과 금합금의 갈바닉 전류 측정에 관한 연구)

  • Kim, Seung-Soo;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.469-481
    • /
    • 1993
  • The purpose of this study was to achieve the reduction of the galvanic current between the dental amalgam alloy and gold alloy. In order to measure the galvanic current between these two metals a prep in the size of $4{\times}13mm$ which was filled with amalgam and another prep of $4{\times}2mm$ was filled with gold alloy was made in the acrylic resin. These two preps were then connected to a 2mm diameter copper wire. Using an ammeter to measure the galvanic current, six different kinds of amalgam and gold alloy were immersed in saline solution with approximately 10mm distance between the two alloys. Chemical agents that are thought to reduce the galvanic current such as hydrazine. silver nitrate, potassium chromate, and bonding agents such as Scotch bond 2(3M) and All bond 2(Bisco) were applied to the alloy surface. Cathodic inhibitor such as hydrazine was applied to gold alloy where as anodic inhibitor such as silver nitrate and potassium chromate were applied to amalgam. Both bonding agents, Scotch bond 2(3M) and All bond 2 (Bisco), were applied to amalgam. The following results were obtained when the currency on the coated alloy surface was compared to the uncoated surface. 1. The galvanic currency went down as the time elapsed and after 30 minutes no change was detected. 2. Initial currency was higher in low copper amalgam compared to high copper amalgam. Intitial currency was the highest in low copper lathe-cut amalgam. 3. Group of gold coated with hydrazine had the most reduction in galvanic currency. 4. Group of amalgam coated with silver nitrate or potassium chromate also showed significant reduction in galvanic currency. 5. The bonding agents also helped reduce galvanic currency. 6. Of all the agents used to reduce galvanic currency, silver nitrate showed the best result.

  • PDF

Production of Silver Impregnated Bamboo Activated Carbon and Reactivity with NO Gases (은첨착 대나무 활성탄의 제조와 NO 가스 반응 특성)

  • Bak, Young-Cheol;Choi, Joo-Hong;Lee, Geun-Lim
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.807-813
    • /
    • 2014
  • The Ag-impregnated activated carbon was produced from bamboo activated carbon by soaking method of silver nitrate solution. The carbonization and activation of raw material was conducted at $900^{\circ}C$. Soaking conditions are the variation of silver nitrate solution concentration (0.002~0.1 mol/L) and soaking time (maximum 24 h). The specific surface area and pore size distribution of the prepared activated carbons were measured. Also, NO and activated carbon reaction were conducted in a thermogravimetric analyzer in order to use for de-NOx agents of used activated carbon. Carbon-NO reactions were carried out with respect to reaction temperature ($20{\sim}850^{\circ}C$) and NO gas partial pressure (0.1~1.8 kPa). As results, Ag amounts are saturated within 2h, Ag amounts increased 1.95 mg Ag/g (0.2%)~ 88.70 mg Ag/g (8.87%) with the concentration of silver nitrate solution in the range of 0.002~0.1 mol/L. The specific volume and surface area of bamboo activated carbon of impregnated with 0.2% silver were maximum, but decreased with increasing Ag amounts of activated carbon due to pore blocking. In NO reaction, the reaction rate of impregnated bamboo activated carbon was retarded as compare with that of bamboo activated carbon. Measured reaction orders of NO concentration and activation energy were 0.63[BA], 0.69l[BA(Ag)] and 80.5 kJ/mol[BA], 66.4 kJ/mol[BA(Ag)], respectively.

Preparation of Ag Nano-Powder from Aqueous Silver Solution through Reductive Precipitation Method (환원침전법을 이용한 수용액으로부터 은 나노분말의 제조 연구)

  • Lee Hwa-Yaung;Oh Jong-Kee
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.21-27
    • /
    • 2005
  • As one of the hydrometallurgical processes available in the recycling of silver-bearing wastes, the preparation of Ag nano-powder was investigated by a reductive precipitation reaction in silver solution using sodium formaldehydesulfoxylate and ascorbic acid as a reducing agent. Silver solution was prepared by dissolving silver nitrate with distilled water, and Tamol NN8906, PVP, SDS and caprylic acid were also used respectively as the dispersant to avoid the agglomeration of particles during the reductive reaction. Ag particles obtained from the reduction reaction from silver solution were characterized using the particle size analyzer and TEM to determine the particle size distribution and morphology. It was found that about $40\%$ excess of sodium formaldehydesulfoxylate was required to reduce completely silver ions in the solution. It alto appeared that the particle size generated with sodium formaldehydesulfoxylate was much greater than that with ascorbic acid. As far as the effect of dispersant on the Ag particles was concerned, the particle size distribution showed typically bimodal distribution in case of Tamol/FVP while very broad distribution ranged from 0.01 to $100{\mu}m$ appeared in case of SDS/caprylic acid.

Non-electrolytic Deposition of Silver on Tungsten Powders for Functionally Gradient Composite Powder

  • Lee, Jae-Ho;Change, Gun-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1225-1226
    • /
    • 2006
  • Particles of high strength material when coated with silver offer a means of obtaining desirable electrical properties and high strength. The coating process employed aqueous ammoniacal silver-nitrate electrolytes with a formaldehyde solution as the reductant. Modifying additives were also applied. The reduction and subsequent deposition of silver occurred selectively on the surface of the tungsten particles. The morphologies of the coated particles were assessed by SEM imaging. The silver was uniformed coated on tungsten powder and its thickness was estimated to be approximately 100nm on the basis of a mass account.

  • PDF

Silver nano-ink formulation based on alcohol and its application to inkjet printing (알코올 용제의 은 나노 잉크 제조와 프린팅 기술의 응용)

  • Cho, Hye-Jin;Kim, Tae-Hoon;Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.551-552
    • /
    • 2006
  • This study was attended to demonstrate synthesis of silver nanoparticles stabilized with polymer and their applicability to printed electronics. Silver nanoparticles were synthesized by reduction of silver nitrate in aqueous solution in the presence of polyvinyl pyrrolidone (PVP) as a stabilizer. The ink used here is composed of 50 wt% Ag NP, 15 wt% humectant and then were printed on polyimide film. Particle deposit morphologies were controlled by varying the ink compositions. Printed silver patterns and dots were cured on a convection oven in air at $300^{\circ}C$ for 60 min. The printed patterns show good shape definition and the resistivity of the printed films is about $5{\mu}{\Omega}{\cdot}cm$.

  • PDF

Solution-Processed Anti Reflective Transparent Conducting Electrode for Cu(In,Ga)Se2 Thin Film Solar Cells (CIGS 박막태양전지를 위한 반사방지특성을 가진 용액공정 투명전극)

  • Park, Sewoong;Park, Taejun;Lee, Sangyeob;Chung, Choong-Heui
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.131-135
    • /
    • 2020
  • Silver nanowire (AgNW) networks have been adopted as a front electrode in Cu(In,Ga)Se2 (CIGS) thin film solar cells due to their low cost and compatibility with the solution process. When an AgNW network is applied to a CIGS thin film solar cell, reflection loss can increase because the CdS layer, with a relatively high refractive index (n ~ 2.5 at 550 nm), is exposed to air. To resolve the issue, we apply solution-processed ZnO nanorods to the AgNW network as an anti-reflective coating. To obtain high performance of the optical and electrical properties of the ZnO nanorod and AgNW network composite, we optimize the process parameters - the spin coating of AgNWs and the concentration of zinc nitrate and hexamethylene tetramine (HMT - to fabricate ZnO nanorods. We verify that 10 mM of zinc nitrate and HMT show the lowest reflectance and 10% cell efficiency increase when applied to CIGS thin film solar cells.

Etchant for Dissolving Thin Layer of Ag-Cu-Au Alloy

  • Utaka, Kojun;Komatsu, Toshio;Nagano, Hiroo
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.304-307
    • /
    • 2007
  • As to the reflection electrode of LCD (liquid crystal displays), silver-copper-gold alloy (hereafter, it is called as ACA (Ag98%, Cu1%, Au1%)) is an effective material of which weathering resistance can be improved more compared with pure silver. However, there is a problem that gold remains on the substrate as residues when ACA is etched in cerium ammonium nitrate solution or phosphoric acid. Gold can not be etched in these etchants as readily as the other two alloying elements. Gold residue has actually been removed physically by brushing etc. This procedure causes damage to the display elements. Another etchant of iodine/potassium iodide generally known as one of the gold etchants can not give precise etch pattern because of remarkable difference in etching rates among silver, copper and gold. The purpose of this research is to obtain a practical etchant for ACA alloy. The results are as follows. The cyanogen complex salt of gold generates when cyanide is used as the etchant, in which gold dissolves considerably. Oxygen reduction is important as the cathodic reaction in the dissolution of gold. A new etchant of sodium cyanide / potassium ferricyanide whose cathodic reduction is stronger than oxygen, can give precise etch patterns in ACA alloy swiftly at room temperature.

Antibacterial Properties of Silver-alginate/PVP Nanofiber (은-알지네이트/PVP 나노섬유의 항균 특성)

  • Choi, Yoo-Sung;Min, Kyung-Du;Yoon, Doo-Soo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.416-422
    • /
    • 2013
  • In order to incorporate silver ions into the alginate, silver-alginate was prepared with aqueous solutions of silver nitrate. In the study, the silver-alginate was prepared by blending with poly vinylpyrrolidone solutions and the electrospinning was performed by using this blend solution. Antibacterial properties of silver-alginate/PVP solutions were estimated for Escherichia coli and Staphylococcus aureus by the colony counting test. Electrospinning conditions of silver-alginate/PVP solution were the tip-to-collector distance of 22 cm, the flow rate of the solution at 0.01 mL/min, and the voltage at 26 kV. The form and size of silver-alginate/PVP nanofibers were estimated by SEM and Image J. The average diameter of the electrospun SA5P15 fibers was 124 nm and showed a narrow diameter distribution. The reduction of bacteria for SA5P15 exhibited 99.9% after 24 h.

The effect of Silver Diamine Fluoride in preventing dental caries (Silver Diamine Fluoride의 치아우식 예방 효과)

  • Song, Ji-Soo
    • The Journal of the Korean dental association
    • /
    • v.56 no.8
    • /
    • pp.424-431
    • /
    • 2018
  • Silver diamine fluoride (SDF) is an alkaline topical solution and it derives from the conjunction of silver nitrate and fluoride. It reduces the growth of cariogenic bacteria, inhibits degradation of dentinal collagen, impedes demineralization and enhances remineralization. It is inexpensive due to the low cost of materials and its application to dental surface is very simple and requires relatively short chair time. Previous studies have shown that the dental caries prevention effect of SDF is superior or similar to topical fluoride application. The main disadvantage of SDF is its esthetic result, and it permanently blacken carious enamel and dentin. The use of SDF has not yet been approved in Korea, but it may be helpful to prevent and treat dental caries in patients with special health care needs and uncooperative young patients.

  • PDF