• Title/Summary/Keyword: Silver nanoparticles (AgNPs)

Search Result 93, Processing Time 0.02 seconds

Preparation of Flame Retardant and Antibacterial Wood with Composite Membrane Coating

  • XU, Jun-xian;LIU, Yang;WEN, Ming-yu;PARK, Hee-Jun;ZHU, Jia-zhi;LIU, Yu-nan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.658-666
    • /
    • 2021
  • A novel flame retardant and antibacterial composite membrane coating for wood surfaces was prepared by adding POSS-based phosphorous nitrogen flame retardant (later referred to as NH2-POSS) and silver nanoparticles (Ag NPs) to chitosan (CS). The effects of NH2-POSS content (mass fractions of CS 0%, 0.5%, 1%, 3%, 5%, and 7%) on the structure and properties of the composite membrane coating on wood were investigated. The composite film was prepared by the method of blending and ducting. Contact angle, tensile property and antibacterial effects of the composite film were measured, and infrared spectroscopy was used. The results show that the addition of NH2-POSS can not only improve the toughness of the membrane, but also the flame retardancy of the membrane, which improves the application of the membrane in wood products. However, with the addition of NH2-POSS, the transparency of the composite membrane was weakened. The inhibitory effect of the composite membrane on the growth of Escherichia coli was enhanced with the increase in Ag NPs. This research provides a foundation for the application of functional wood.

Development of New Materials of Ginseng by Nanoparticles

  • Yang, Deok Chun;Mathiyalagan, Ramya;Yang, Dong Uk;Perez, Zuly Elizabeth Jimenez;Hurh, Joon;Ahn, Jong Chan
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.3-3
    • /
    • 2018
  • For centuries, Panax ginseng Meyer (Korean ginseng) has been widely used as a medicinal herb in Korea, China, and Japan. Ginsenosides are a class of triterpene saponins and recognized as the bioactive components in Korean ginseng. Ginsenosides, which can be classified broadly as protopanaxadiols (PPD), protopanaxatriols (PPT), and oleanolic acids, have been shown to flaunt a vast array of pharmacological activities such as immune-modulatory, anti-inflammatory, anti-tumor, anti-diabetic, and antioxidant effects. In recent years, a number of ginseng and ginsenoside researches have increasingly gained wide attention owing to its unique pharmacological properties. Although good efficacies of ginsenosides have been reported, lack of target specific delivery into tumor sites, low solubility, and low bioavailability due to modifications in gastro-intestinal environments limit their biomedical application in clinical trials. As a result to this major challenge, nanotechnology and drug delivery techniques play a significant role to solve this problematic issue. Thus, we reported the preparation of poly-ethylene glycol (PEG) and glycol chitosan (GC) functionalized to ginsenoside (Compound K and PPD) conjugates via hydrolysable ester bonds with improved aqueous solubility and pH-dependent drug release. In vitro cytotoxicity assays revealed that PEG-CK, and PPD-CK conjugates exhibited lower cytotoxicity compared to bare CK and PPD in HT29 cells. However, GC-CK conjugates exhibited higher and similar cytotoxicity in HT29 and HepG2 cells. Furthermore, GC-CK-treated RAW264.7 cells did not exhibit significant cell death at higher concentration of treatment which supports the biocompatibility of the polymer conjugates. They also inhibited nitric oxide production in lipopolysaccharide (LPS)-induced RAW64.7 cells. In addition to polymer-ginsenoside conjugates, silver (AgNps) and gold nanoparticles (AuNps) have been successfully synthesized by green chemistry using different m. The biosynthesized nanoparticles demonstrated antimicrobial efficacy, anticancer, anti-inflammatory, antioxidant activity, biofilm inhibition, and anticoagulant effect. Special interest on the effective delivery methods of ginsenoside to treatment sites is the focus of metal nanoparticle research.In short, nano-sizing of ginsenoside results in an increased water solubility and bioavailability. The use of nano-sized ginsenoside and P. ginseng mediated metallic nanoparticles is expected to be effective on medical platform against various diseases in the future.

  • PDF

Development of Metal Oxide-based Photocatalyst Coated on Activated Carbon for Removing Volatile Organic Compounds (휘발성 유기화합물 저감을 위한 금속산화물 기반 광촉매-활성탄 복합체 개발)

  • Jae-Rak, Ko;Yewon, Jang;Ho Young, Jun;Hwan-Jin, Bae;Ju-Hyun, Lee;Chang-Ho, Choi
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.285-292
    • /
    • 2022
  • Adsorption tower systems based on activated carbon adsorption towers have mainly been employed to reduce the emission of volatile organic compounds (VOCs), a major cause of air pollution. However, the activated carbon currently used in these systems has a short lifespan and thus requires frequent replacement. An approach to overcome this shortcoming could be to develop metal oxide photocatalysis-activated carbon composites capable of degrading VOCs by simultaneously utilizing photocatalytic activation and powerful adsorption by activated carbon. TiO2 has primarily been used as a metal oxide photocatalyst, but it has low economic efficiency due to its high cost. In this study, ZnO particles were synthesized as a photocatalyst due to their relatively low cost. Silver nanoparticles (Ag NPs) were deposited on the ZnO surface to compensate for the photocatalytic deactivation that arises from the wide band gap of ZnO. A microfluidic process was used to synthesize ZnO particles and Ag NPs in separate reactors and the solutions were continuously supplied with a pack bed reactor loaded with activated carbon powder. This microfluidic-assisted pack bed reactor efficiently prepared a Ag-ZnO-activated carbon composite for VOC removal. Analysis confirmed that Ag-ZnO photocatalytic particles were successfully deposited on the surface of the activated carbon. Conducting a toluene gasbag test and adsorption breakpoint test demonstrated that the composite had a more efficient removal performance than pure activated carbon. The process proposed in this study efficiently produces photocatalysis-activated carbon composites and may offer the potential for scalable production of VOC removal composites.