• Title/Summary/Keyword: Silver

Search Result 3,463, Processing Time 0.045 seconds

Removal of Inorganic Odorous Compounds by Scrubbing Techniques using Silver Nano-particles (나노 은 입자 세정법을 이용한 무기 악취물질의 제거)

  • Shin, Seung-Kyu;Huyen, Tran;Song, Ji-Hyeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.6
    • /
    • pp.674-681
    • /
    • 2008
  • Silver as a metal catalyst has been used to remove odorous compounds. In this study, silver particles in nano sizes ($5{\sim}30nm$) were prepared on the surface of $NaHCO_3$, the supporting material, using a sputtering method. The silver nano-particles were dispersed by dissolving $Ag-NaHCO_3$ into water, and the dispersed silver nano-particles in the aqueous phase was applied to remove inorganic odor compounds, $NH_3$ and ${H_2}O$, in a scrubbing reactor. Since ammonia has high solubility, it was removed from the gas phase even by spraying water in the scrubber. However, the concentration of nitrate (${NO_3}^-$) ion increased only in the silver nano-particle solution, implying that the silver nano-particles oxidized ammonia. Hydrogen sulfide in the gas phase was rapidly removed by the silver nano-particles, and the concentration of sulfate (${SO_4}^{2-}$) ion increased with time due to the oxidation reaction by silver. As a result, the silver nano-particles in the aqueous solution can be successfully applied to remove odorous compounds without adding additional energy sources and producing any harmful byproducts.

Silver Immobilization on Honeycomb-patterned Polyvinypyrrolidone thin Films via an Electroless Process

  • Kim, Bong-Seong;Kim, Won-Jung;Kim, Young-Do;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4221-4226
    • /
    • 2011
  • Honeycomb-patterned polyvinypyrrolidone (PVP) thin films coated with nanometer-sized silver particles were prepared using honeycomb-patterned polystyrene (PS) template films fabricated by casting a polystyrene solution under humid condition. Silver was first metallized on the patterned PS films via silver nitrate ($AgNO_3$) reduction using tetrathiafulvalene (TTF) and a small amount of PVP as the reductant and dispersing agent, respectively. The effects of $AgNO_3$, TTF, and PVP solution concentrations during the reduction process in acetonitrile were determined to obtain a uniform silver-coated honeycomb-patterned PS film. Second, the silver-metallized patterned porous PS films were filled with high PVP concentration solutions via the spincoating process. Silver-coated patterned PVP films were obtained by peeling off the PVP layer from the template PS film after drying. The results show that the honeycomb-patterned PVP films uniformly coated with silver particles are conveniently obtained using the silver-coated patterned PS template, although the direct fabrication of these films using water droplets under humid conditions was not feasible because of the water solubility of PVP.

Preparation of silver stabilizer layer on coated conductor by continuous dip coating method using organic silver complexes (유기 은 착체 화합물을 코팅용액으로 사용하여 연속적인 담금코팅방법에 의한 은 안정화층 제조)

  • Lee, Jong-Beom;Kim, Ji-Cheol;Park, Sin-Keun;Kim, Byeong-Joo;Kim, Jae-Geun;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Silver stabilizing layer of coated conductor has been prepared by dip coating method using organic silver complexes containing 10 wt% silver as a starting material. Coated silver complex layer was dried in situ with hot air and converted to crystalline silver by post heat treatment in flowing oxygen atmosphere. A dense continuous silver layer with good surface coverage and proper thickness of 230 nm is obtained by multiple dip coatings and heat treatments. The film heat treated at $500^{\circ}C$ showed good mechanical adhesion and crystallographic property. The interface resistivity between superconducting YBCO layer and silver layer prepared by dip coating was measured as $0.67\;{\times}\;10^{-13}\;{\Omega}m^2$. Additional protecting copper layer with the thickness of $20\;{\mu}m$ was successfully deposited by electroplating. The critical current measured with the specimen prepared by dip coating and sputtering on same quality YBCO layer showed similar value of ~140 A and proved its ability to replace sputtering method for industrial production of coated conductor.

Application of Biosynthesized Silver Nanoparticles Against a Cancer Promoter Cyanobacterium, Microcystis aeruginosa

  • El-Sheekh, Mostafa Mohamed;El-Kassas, Hala Yassin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6773-6779
    • /
    • 2014
  • Background: Nanotechnology opens new applications in many fields including medicine. Among all metallic nanoparticles, silver nanoparticles (silver NPS) have proved to be the most effective against a large variety of organisms including toxic cyanobacteria. Materials and Methods: Silver NPs were biosynthesized in vivo with different alga species namely, Spirulina piatensis, Chlorella vulgaris and Scenedesmus oh/iquus following two scenarios. First: by suspending a thoroughly washed algae biomass in 1 mM aqueous $AgN0_3$ solution. Second: by culturing them individually in culture media containing the same concentration of $AgN0_3$. Silver NPs were characterized using UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive analysis (EDX) and Fourier transform infra-red (FfIR) spectroscopy. The biosynthesized silver NPs were tested for cytotoxic activity against a cancer promoter cyanobacteruim Microcystis aeruginosa, considering effects on cell viability and chlorophyll content. Results: The surface plasmon band indicated the biosynthesis of silver NPs at ~400 nm. Transmission electron microscopy (TEM) revealed that the silver NPs had a mean average size below 100 nm. Energy-dispersive analysis X-ray (EDX) spectra confirmed the presence of silver element. FfIR spectral analyses suggested that proteins and or polysaccharides may be responsible for the biosynthesis of silver NPs and (-COO-) of carboxylate ions is responsible for stabilizing them. The toxic potentialities ofthe biosynthesized silver NPs against the cancer promoter cyanobacterium, Microcystis aeruginosa showed high reduction in viable cells count and the total chlorophyll content. Conclusions: The potential activity of the biosynthesized silver NPs from the studied algae species against Microcystis aernginosa cells is expected to be mainly mediated by the release of silver ions (Ag+) from the particle surface and bioactive compounds as indicated by FfIR analysis.

Chemical Variations of Electrum from Gold and/or Silver Deposits in the Southeast Korea (한국 동남부지역 금·은 광상산 에렉트럼의 화학조성)

  • Choi, Seon-Gyu;Park, Maeng-Eon;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.325-333
    • /
    • 1994
  • Gold and/or silver mineralization in the southeast province, Korea, occurred in hydrothermal quartz vein that fills fracture zones in Cretaceous volcanic and sedimentary rocks of the Gyeongsang basin or granites and Precambrian gneiss. Most of the gold-silver-bearing veins in the province occur in Hapcheon, Suncheon and Haman-Gunbuk area where they are associated with Cretaceous Bulgugsa granites. On the basis of the Ag/Au ratio on amounts produced and ore grades, mode of occurrence, and associated mineral assemblages, hydrothermal Au-Ag deposits in southeast province, Korea, can be classified as follows: pyrite-type gold deposit (Group IIB, Samjeong and Sangchon deposits), antimony-type gold-silver deposit (Group IV, Gisan and Geochang deposits), and antimony-type silver deposit (Group V, Sanggo, Seweon, Seongju and Gahoe deposits). All of the gold-silver deposits in the province are generally characteristics of the gold-silver or silver-dominant type deposit which contains more silver-bearing minerals than those deposits in central Korea. The gold-silver mineralization in the deposits consist of two generation; the early characterized by gold precipitation and the late represented by silver-rich (as silver-bearing sulfosalts minerals) mineralization. All but one deposit (Samjeong deposit) having relatively lower Au content in electrum values between ${\approx}20$ and ${\approx}50$ atomic %. The mineralogical data on electrum-sphalerite and/or arsenopyrite geothermometry and fluid inclusion data indicate that the gold and silver mineralizations were occurred at temperatures of $190{\sim}280^{\circ}C$ and $150{\sim}180^{\circ}C$, respectively. These suggest that the gold-silver mineralization in the province occurred in the lower temperature and pressure conditions as epithermal-type hydrothermal vein deposit.

  • PDF

Experimental study for removing silver sulfide from silver objects by Nd:YAG laser cleaning (은제품의 황화은 부식층 제거를 위한 Nd:YAG 레이저클리닝 실험 연구)

  • Lee, Hyeyoun;Cho, Namchul
    • Journal of Conservation Science
    • /
    • v.30 no.1
    • /
    • pp.95-101
    • /
    • 2014
  • Silver objects tarnish with black from reaction with sulfurous acid or hydrogen sulfide of atmospheric. Blackening of silver objects results from formation of silver sulfide($Ag_2O$) on the surface. Silver sulfide usually is usually removed by conservation treatment. There are several cleaning methods such as chemical, electrochemical and micro-abrasion cleaning, but all of them consume silver. This study investigated the safe and effective parameter of laser cleaning by test on silver coupons. Laser cleaning is a selective process for the removal of specific substances. At first, laser cleaning applied to plain silver coupons, which were not corroded, to find out the safe range of laser energy density. From results, plain silver coupons were not changed at 1064nm below $4.00J/cm^2$ and at 532nm below $2.39J/cm^2$. The corrosion layer(silver sulfide) of artifical corroded silver coupons was removed at 1064nm with $2.39J/cm^2$ by 5~10 pulses and at 532nm with $1.19J/cm^2$ by 5~10 pulses. The removal thickness of corrosion layer was about 13-25nm per a laser pulse using AES analysis. In addition, laser cleaning tested the tarnish silver rings based on the results of silver coupons. As a result of test, the black surface were clean successfully and gave luster of silver, which showed the application possibility of laser cleaning for silver objects.

The Necessity and the Characteristic of Picture Books for the Silver Generation (실버세대를 위한 그림동화책의 필요성과 특성)

  • Li, Shu;Oh, Chi-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.2
    • /
    • pp.387-397
    • /
    • 2016
  • The purpose of this study is to suggest design characteristics of picture books for silver generation empirically through academic consideration of necessity and characteristics of picture books targeting silver generation. Through an analytical result of literature materials such as library and information science, pedagogy, and literature therapeutics, and aging phenomenon, picture books help mental and physical health of silver generation, but picture books for silver generation are insufficient in comparison with demand. Therefore, a theoretical basis of study and development of fairy tale books for silver generation is acutely needed. This study suggested that close attention for characteristics of silver generation is needed to solve a problem about dyslexia of silver generation in story, picture(expression, size, layout, structure, and color), and typography of characteristic factors of picture on designing fairy tale books for silver generation, suggesting needs to develop picture books reflecting characteristics such as visual organ, body function, and psychological factor of silver generation. In addition, design characteristics for composition of picture books for silver generation will be used as part of advanced data in a study on solid analytical data through an actual analysis on silver generation in the future.