• Title/Summary/Keyword: Silk Fabrics

Search Result 621, Processing Time 0.023 seconds

Dyeing Properties and Colour Fastness of Cotton and Silk Fabrics Dyed with Cassia tora L. Extract

  • Lee Young-Hee;Kim Han-Do
    • Fibers and Polymers
    • /
    • v.5 no.4
    • /
    • pp.303-308
    • /
    • 2004
  • A natural colorant was extracted from Cassia tara L. using buffer solutions (pH: 2-11) as extractants. The dyeing solution (Cassia tara L. extract) extracted using pH 9 buffer solution was found to give the highest K/S values of dyed fabrics. Cotton and silk fabrics were dyed with Cassia tara L. extract at $60^{\circ}C$ for 60 min with pre-treatment of various metal salts as mordants. It was found that Cassia tara L. extract was polygenetic dyestuffs and its major components were anthraquinones. Studies have been made on the effects of the kind of mordant on dyeing properties and colour fastnesses of cotton and silk fabrics. The K/S of cotton fabrics increased in the order of the dyeing using $FeSO_4 >CuSO_4> ZnSO_4> MnSO_4\cong Al_2(SO_4)_3 > NiSo_4 > none$, however, the K/S of silk fabrics increased in the order of the dyeing using $FeSO_4 > CuSO_4 > ZnSO_4\cong Al_2(SO_4)_3 > MnSO_4\cong NiSO_4 > none$. It was found that the K/S values of dyed fabrics were largely affected by the colour difference $(\DeltaE)$ between mordanted fabric and control fabric. However, they were not depended on the content of mordanted metal ion of the fabrics. Mordants $FeSO_4$ and CuSO_4$ for cotton fabric, $FeSO_4,\; CuSO_4,\; and\; Al_2(S0_4)_3$ for silk fabric were found to give good light fastness (rating 4).

A Study on the Functionality of the Fabrics Dyed with Pine Needles Extract (1) (솔잎 추출물을 이용한 염색직물의 기능성에 관한 연구[1])

  • Park Young-Hee
    • Journal of the Korean Society of Costume
    • /
    • v.56 no.2 s.101
    • /
    • pp.147-154
    • /
    • 2006
  • In this study 1, the dyeability and sun protection characteristic of the fabrics dyed with pine needles extract was investigated. In the test of color difference, the surface color of all the dyed fabric of both cotton and silk came to light as greenish yellow. In the test of dyeing colorfastness, the colorfastness to sunlight of dyed cotton fabric was below 2nd grade and the one of dyed silk fabric was below 3rd grade. The colorfastness to laundry for the degree of discoloration showed a difference as to mordants, but the colorfastness to laundry for the degree of contamination was excellent as all the dyed fabrics were 4th-5th grade. The colorfastness to perspiration was excellent as the degree of discoloration was more than 3rd grade and the degree of contamination was more than 4th-5th grade. The colorfastness to rubbing showed the excellent result as all the dyed fabrics were 4th-5th grade. In the test of sun protection factor(SPF), the cotton and silk fabrics dyed with $FeSO_4{\cdot}7H_{2}O$ mordant showed very high sun protection characteristic as the SPF was each 36.1 and 42.5. In the test of sun protection rate for UV-A and UV-B, the cotton and silk fabrics dyed with $FeSO_4{\cdot}7H_{2}O$ mordant showed the very high sun protection rate of more than $90\%$.

Dyeing Fabrics with Grape Juice which is Discarded in the Process of Grape Juice (포도쥬스 제조중 폐기되는 포도액을 이용한 직물염색)

  • Jeong, Young-Ok;Kim, Soon-Sim
    • Fashion & Textile Research Journal
    • /
    • v.4 no.1
    • /
    • pp.79-85
    • /
    • 2002
  • To develope natural dyeing materials from the unused plant materials, we had several dyeing experiments to investigate the optimum conditions of dyeing fabrics with the waste grape juice. Dyeing experiments were done under different dyeing conditions of dyeing time, dyeing temperature, pH and concentration of dyebath and mordants which were treated after dyeing. Experimental fabrics were silk, cotton, ramie and hemp. Color difference(${\Delta}E$) and Munsell's HV/C of the dyed fabrics and color fastness of silk dyed fabrics to dry cleaning, washing, rubbing, perspiration and light were measured. The color differences of dyed experimental fabrics were very slightly increased with dyeing time and the color of dyed silk was light purple and the cotton, ramie and hemp was light red purple. The color differences of dyed experimental fabrics were decreased and the color became lighter with dyeing temperature increased. The color differences of dyed experimental fabrics were decreased and the color changed from light purple to blue with the pH of dyebath increased. The color differences of dyed experimental fabrics were slightly increased with the concentration of dyebath increased. The color of dyed fabric changed with the mordant treatment and were different among the experimental fabrics. On the whole, blue tone increased with the Al and Fe mordant and green tone increased with the Cu mordant. The color fastness of dyed silk fabrics to light, washing (change) and perspiration (change) was bad and color fastness to dry cleaning and rubbing were good.

Effects of Marigold Extracts and Powdered Colorant on the Dyeability and Antifungal Activity of Silk and Cotton Fabrics (매리골드 식물체 추출액 및 분말 색소가 견과 면직물의 염색성과 항균성에 미치는 영향)

  • Park, Yun-Jum;Lee, Sang-Phil;Kim, Hyun-Ju;Jang, Hong-Gi;Choi, Jeong-Rak;Heo, Buk-Gu
    • The Korean Journal of Community Living Science
    • /
    • v.17 no.4
    • /
    • pp.39-48
    • /
    • 2006
  • This study was carried out to make a search for the usefulness of marigold plants (Tagetes erecta) as a natural dye. And we have also examined into the dyeability and antifungal activity of silk and cotton fabrics dyed with 2% powdered colorant and 1% liquid colorant. Almost surface colors of silk and cotton fabrics dyed with 2% powdered colorant and that dyed with 1% liquid colorant except for that treated Cu and Fe with mordants were shown by Y-level. $L^*$ values of silk fabrics dyed with 2% powdered colorant were 66.2 to 86.39, those $a^*$ values were -1.97 to 6.09, and those $b^*$ values were 13.69 to 35.97. And $L^*$ values of cotton fabrics dyed with 2% powdered colorant were 78.97 to 89.62, those a values were -3.39 to 0.38, and those $b^*$ values were 5.63 to 15.61 $L^*$ values of silk fabrics dyed with 1% liquid colorant were 34.37 to 85.57, those a values were -7.79 to 12.33, and those $b^*$ values were 15.13 to 82.91, And $L^*$ values of cotton fabrics dyed with 1% liquid colorant were 44.12 to 87.90, those $a^*$ values were -8.37 to 6.18, and those $b^*$ values were 11.65 to 78.87. Colorfastness of silk fabrics against light treated nothing with mordants and that dyed with 1% liquid colorant decreased for a little by second grade, however, that against washing, rubbing, perspiration and dry cleaning were increased over fourth grade. Colorfastness of cotton fabrics in terms of rubbing, light, and dry cleaning, except for washing and perspiration, were shown by over third grade, when that was treated nothing with mordants. Antifungal activities of silk fabrics treated nothing with mordants and dyed with 1% liquid colorant of marigold extracts were shown by 28.9% against Staphylococcus aureus. However, those of Al, Ca, Cu and tartaric acid mordanting were more than 25.5% against Staphylococcus aureus and Klebsiella pneumoniae.

  • PDF

A Study on the Soil-Redeposition in Drycleaning Process (드라이클리닝시의 재오염에 관한 연구)

  • Cha Ok Seon;Kang In Suk
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.12 no.3 s.28
    • /
    • pp.383-390
    • /
    • 1988
  • To investigate the soil-redeposition and color change on dry-cleaning, the white and, dyed, fabrics of cotton, silk, polyester and viscose rayon were put into ordinary commercial dry-cleaning machine with soiled cloths. The solvents used were hydrocarben, perchloroethylene and fluorocarbon. From the result, we obtained the following conclusions by examining soil-redeposition, color difference of fabrics and tenacity of cotton fabric. 1. In case of white fabrics, as a whole, perchloroethylene shows the lowest soil redeposition. When distillation process is adopted, the rate of soil redeposition is lowered. with hydrocarbon sdvent. The order of soil redeposition rate of fibers are following; cotton> viscose rayon> silk> polyester. 2. In case of dyed fabrics, the color difference between soil redeposited fabrics and originals ($\delta\;E_1$) is similar with white fabrics in pattern, and the order is cotton, viscose rayon, silk and polyester. The color difference between fabrics, treated by pure solvents and originals ($\delta\;E_2$ ) is also validated as a little. It seems to be due to the bleeding of dyestuffs from fabrics. 3. There is a little change of tenacity of cotton fabrics by dry-cleaning with perchloroethylene solvent. It is supposed that the damage is more influenced the repetitive mechanical action during dry-cleaning than by acidity of the solvent having the acid value of 0,14.

  • PDF

Physical Stimulus of Silk Woven Fabrics, Subjective Hand and Mechanical Properties (견직물의 물리적 자극에 따른 태와 역학적 특성)

  • 김춘정;나영주
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.3
    • /
    • pp.429-439
    • /
    • 2000
  • This study was aimed to investigate the handle and mechanical properties of silk woven fabrics according to the fabric structure and yarn types 56 male and female students evaluated 16 black specimens with semantic differential scale of 20 hand adjectives. Mechanical parameters such as surface properties, bending properties and compression properties were tested using by KES-FS system. Data were analyzed through factor analysis, pearson correlation coefficient and t-test using PC SAS package. The results were as follows: The hand adjectives were grouped as 4 'surface roughness', 'flexibility', ;sense of thermal', and 'dryness'. 'Surface roughness' was highly sensed at satin fabrics of hard-twist yarn, noil yarn and spun yarn, while it was not at the fabrics of normal satin and twill at all. 'Flexibility' was reverse to 'surface roughness'. Thermal sense was felt highly at satin fabrics of noil-yarn, while low at plain fabrics of normal yarn. 'Dryness' was high at satin fabrics of hard-twist yarn and while it was low at normal satin fabrics. Predicted equations for subjective hand from mechanical properties of fabrics were developed using Stevens's law and stepwise regression and the coefficients of determination were high.

  • PDF

A Study on the Shrinkage of Silk Fabric by $Ca(NO_3){_2}$ Solution

  • Choi, Se-Min;Shin, Yu-Ju;Kim, Jong-Jun;Jeon, Dong-Won
    • Journal of Fashion Business
    • /
    • v.13 no.3
    • /
    • pp.136-148
    • /
    • 2009
  • The phenomenon of the shrinkage of silk fibers induced by inorganic salts including LiBr, $Ca(NO_3){_2}$, and $CaCl_2$, has been studied up to the present as one of the finishing methods of silk. It is expected that the shrinkage phenomenon may greatly contribute to the realization of the high sensibility of silk fibers. Especially the shrinkage enables the expression of three-dimensional appearance of silk fabrics along with the improvements in dimensional stability, resilience in stretching, and comfort. Numerous theoretical studies on the contraction phenomenon by $Ca(NO_3){_2}$ have been conducted so far. These studies have focused mostly on the silk fibers. It is difficult to find studies on silk fabrics. The negative aspects of the finishing are such as strength drop, yellowish discoloration, and fiber damage. These should also be considered as well as the positive aspects. In this study, the phenomenon of salt shrinkage is diversely reviewed by applying $Ca(NO_3){_2}$ solution for the silk fabrics as objects. The changes in the air permeability, thickness, and color were investigated with focus on the shrinkage of the silk fabrics according to the changes in treatment conditions. Some findings from this study are as follows: Within short period of time at the initiation of salt shrinkage, the salt shrinkage proceeds effectively. In the case of concentration of 47.4%, or 46.3% of $Ca(NO_3){_2}$ solution, appropriate treatment time seems to be 20seconds, or $2{\sim}8$minutes, respectively. Excessive shrinkage is obtained when lower liquor ratio is adopted. As a result, the condition is acting extremely disadvantageously against the thickness and yellow discoloration aspects.

Psychological and Physiological Responses to the Rustling Sounds of Korean Traditional Silk Fabrics

  • Cho, Soo-Min;Yi, Eun-Jou;Cho, Gil-Soo
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.450-456
    • /
    • 2006
  • The objectives of this study were to investigate physiological and psychological responses to the rustling sound of Korean traditional silk fabrics and to figure out objective measurements such as sound parameters and mechanical properties determining the human responses. Five different traditional silk fabrics were selected by cluster analysis and their sound characteristics were observed in terms of FFT spectra and some calculated sound parameters including level pressure of total sound (LPT), Zwicker's psychoacoustic parameters - loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z), and sound color factors such as ${\Delta}L\;and\;{\Delta}f$. As physiological signals, the ratio of low frequency to high frequency (LF/HF) from the power spectrum of heart rate variability, pulse volume (PV), heart rate (HR), and skin conductance level (SCL) evoked by the fabric sounds were measured from thirty participants. Also, seven aspects of psychological state including softness, loudness, sharpness, roughness, clearness, highness, and pleasantness were evaluated when each sound was presented. The traditional silk fabric sounds were likely to be felt as soft and pleasant rather than clear and high, which seemed to evoke less change of both LF/HF and SCL indicating a negative sensation than other fabrics previously reported. As fluctuation strength(Z) were higher and bending rigidity (B) values lower, the fabrics tended to be perceived as sounding softer, which resulted in increase of PV changes. The higher LPT was concerned with higher rating for subjective loudness so that HR was more increased. Also, compression linearity (LC) affected subjective pleasantness positively, which caused less changes of HR. Therefore, we concluded that such objective measurements as LPT, fluctuation strength(Z), bending rigidity (B), and compression linearity (LC) were significant factors affecting physiological and psychological responses to the sounds of Korean traditional silk fabrics.

Development of Eco-friendly Textiles by Studying the effect of the Natural Chorangak Liquid Treatment of Silk Fabrics - Focusing on the Mechanical Properties & the Hand - (견직물의 초란각액 처리 조건에 따른 연구(I) - 물성 및 태 변화를 중심으로 -)

  • Lee, Jungju;Kim, Kiyoun
    • Korean Journal of Human Ecology
    • /
    • v.22 no.1
    • /
    • pp.131-140
    • /
    • 2013
  • Eco-friendly and health-functional clothing is now becoming the target of the worldwide hot trends. The purpose of this study is to develop an eco-friendly textiles to decrease environmental pollution and to be harmless for human health by investigating how the natural chorangak liquid treatment affects the changes of mechanical properties and the hand of silk fabrics according to different treatment conditions. Treatment was varied with various temperatures ($85^{\circ}C$, $90^{\circ}C$, $95^{\circ}C$) for 90 seconds after degumming. The results were as follows: 1) The natural chorangak liquid is the most effective at the ratio of glacial acid 200ml with eggshell 20g minimizing the time limit and sludge reduction. Its treatment of silk fabrics is optimized at $90^{\circ}C$ for 90 seconds with 25% conc. after degumming when considering tenacity and elongation. 2) After the treatment, tenacity and elongation of specimen are increased compared with those of degummed silk fabrics. 3) After analyzing the effect of the treatment on the characteristic values of basic mechanical properties of silk fabrics, mechanical properties (tensile, bending, shearing, compression, surface) are overall improved. The properties of thickness and weight are increased as well. 4) Based on the clear analysis on effects of the treatment on the mechanical properties and the hand of silk fabrics, the level of THV was enhanced from good to excellent. Therefore, chorangak liquid can be utilized satisfactorily as a new finishing agent for developing eco-friendly textiles.

A Study on Three-dimensional Effects and Deformation of Textile Fabrics: Dynamic Deformations of Silk Fabrics

  • Kim, Minjin;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.17 no.6
    • /
    • pp.28-43
    • /
    • 2013
  • Recent trends toward the collaborations among various sectors of academia and research areas have brought interests and significances in new activities especially in the fashion and textile areas. One of the collaboration examples is the recent research projects on 3D virtual clothing systems based on the 3D CAD software. The 3D virtual clothing systems provide simulated apparels with high degrees of fidelity in terms of color, texture, and structural details. However, since real fabrics exhibit strong nonlinearity, anisotropy, viscoelasticity, and hysteresis, the 3D virtual clothing systems need fine tuning parameters for the simulation process. In this study, characteristics of silk fabrics, which are woven by using degummed silk and raw silk yarns, are being analyzed and compared. Anisotropic properties may be measured as warp and filling direction properties separately in woven fabrics, such as warp tensile stress or filling bending rigidity. Hysteretic properties may be measured as bending hysteresis or shear hysteresis by using KES measurements. These data provide deformation-force relationships of the fabric specimen. Three-dimensional effects obtained when using these characteristic fabrics are also analyzed. The methods to control the three-dimensional appearance of the sewn fabric specimens when utilizing a programmable microprocessor-based motor device, as prepared in this study, are presented. Based on the physical and mechanical properties measured when using the KES equipment, the property parameters are being into a 3-dimensional virtual digital clothing system, in order to generate a virtual clothing product based on the measured silk fabric properties.