• Title/Summary/Keyword: Silicon photonics

Search Result 117, Processing Time 0.017 seconds

Development of Laser Power Meter Calibration System with 12-diode Laser Sources (12개 다이오드 레이저를 활용하는 레이저 복사출력계 교정시스템 개발)

  • Kanghee Lee;Jae-Keun Yoo;In-Ho Bae;Seongchong Park;Dong-Hoon Lee
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.2
    • /
    • pp.61-70
    • /
    • 2024
  • We demonstrate a laser power meter calibration system based on 12-diode laser sources coupled to single-mode fibres in a wavelength range from 400 to 1,600 nm. In our system, three laser power controllers ensure that the output power uncertainty of all laser sources is less than 0.1% (k=2). In addition, all laser beams are adjusted to have similar beam sizes of approximately 2 mm (1/e2-width) at the measurement position to minimise unmeasured laser power on a detector. As a reference detector, we use an integrating sphere combined with silicon and indium gallium arsenide photodiodes to minimise the non-uniformity and non-linearity of responsivity. The minimum uncertainty of the calibration system is estimated to be 1.1% (k=2) for most laser wavelengths.

A Minimum Wavelength Assignment Technique for Wavelength-routed Optical Network-on-Chip (파장 라우팅 광학 네트워크-온-칩에서의 최소 개수 파장 할당 기법)

  • Kim, Youngseok;Lee, Jae Hun;Cui, Di;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.82-90
    • /
    • 2013
  • An Optical Network-on-Chip(ONoC) based on silicon photonics is one of promising technology for next generation exascale computing architectures. Recent active researches on ONoC focus on improving bandwidth further and avoiding path collisions by using wavelength division multiplexing (WDM). However, the number of wavelengths used for the WDM increases linearly as the number of Processing Element (PE) increases in existing ONoCs which adopt centralized routing architecture. The problem will also arises growing cost of optical devices such as light switches and light sources and limits the scalability of ONoC due to the sinal loss caused by interference of distinct light sources. In this paper, we proposes a distributed routing architecture for ONoC which is based on 2D-mesh structure using WDM technique and present a method that minimize the required number of wavelengths exploiting the connectivity of communication. In comparison with existing centralized routing architectures, results show reduction by 56% of the number of wavelengths and 21% of the number of optical switches in $8{\times}8$ networks.

Optical Microphone Incorporating a Reflective Micromirror and a Dual-core Collimator (반사형 마이크로미러와 듀얼 코어 클리메이터를 이용한 광 마이크로폰)

  • Song, Ju-Han;Kim, Do-Hwan;Gu, Hyun-Mo;Park, Hyun-Jung;Lee, Sang-Shin;Cho, Il-Joo
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.94-98
    • /
    • 2006
  • An optical microphone based on a dual-core fiber collimator and a membrane type micromirror serving as an optical head and a reflective diaphragm respectively was implemented. The micromirror diaphragm is suspended by a thin silicon bar linked with a frame, thus it is subject to a displacement induced by acoustic waves. The optical head incorporating two collimators integrated in a single housing gives light to and receives it from the diaphragm, rendering the optical microphone structure simple and compact. This dual-core collimator having a slowing varying beam profile facilitates the initial alignment of the optical head with the diaphragm, especially the distance between them. For the assembled microphone, the static characteristics were investigated tofind the operation point defined as the optimum distance between the head and the diaphragm, and a frequency response with a variation of about $\pm$5 dB for the range of up to 3kHz was achieved.

Measurement of a refractive index and thickness of silicon-dioxide thin film on LCD glass substrate using a variable angle ellipsometry (가변 입사각 타원 해석법을 사용한 유리기판위의 이산화규소박막의 굴절율 및 두께 측정)

  • Pang, H. Y.;Kim, H. J.;Kim, S. Y.;Kim, B. I.
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.31-36
    • /
    • 1997
  • We measured refractive indices and thicknesses of SiO$_2$ thin films that have been plated on LCD glass substrate for the purpose of preventing the out-diffusion of sodium ions. The best experimental condition to determine refractive index and thickness of SiO$_2$ thin film by using ellipsometry is searched for, where ⅰ) the film thickness is increased uniformly by 20 $\AA$ from 0 $\AA$ to the period thickness while the angle of incidence is fixed and ⅱ) the angle of incidence is increased uniformly by 1$^{\circ}$ from 45$^{\circ}$ to 70$^{\circ}$ while the film thickness is fixed. We estimated the errors in determining the refractive index and thickness by comparing the measurement error of $\Delta$ and Ψ with the calculated one. The ellipsometric constants of SiO$_2$ thin film on LCD glass substrate are measured at several angle of incidence around the Brewster angle, which is the best angle if the experimental error of ellipsometer is not sensitive to the incident angle. Also the best fit refractive index and thickness of SiO$_2$ thin film to these ellipsometric constants measured at several angle of incidenc eas well as the best fit ones to the SE data are obtained using regressional analysis.

  • PDF

Determination of the complex refractive index of $Ge_2Sb_2Te_5$ using spectroscopic ellipsometry (분광타원해석법을 이용한 $Ge_2Sb_2Te_5$ 의 복소굴절율 결정)

  • Kim, S. J.;Kim, S. Y.;Seo, H.;Park, J. W.;Chung, T. H.
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.6
    • /
    • pp.445-449
    • /
    • 1997
  • The complex refractive indices of $Ge_2Se_2Te_5$ which show reversible phase change between the crystalline phase and an amorphous one depending upon the annealing process have been determined in the spectral range of 0.7-4.5 eV. The $Ge_2Se_2Te_5$ films were DC sputter deposited on the crystalline silicon substrate. The spectro-ellipsometry data of a thick film were analyzed following the modelling procedure where the quantum mechanical dispersion relation were used for the complex refractive indices of both the cryastalline phase $Ge_2Se_2Te_5$ and and amorphous phase $Ge_2Se_2Te_5$, respectively. On the other hand, with the surface micro-roughness layer whose effective thickness was determined from AFM analysis, the spectro-ellipsometry data were numerically inverted to yield the complex refractive index of $Ge_2Se_2Te_5$ at each wavelength. With these set of complex refractive indices, the reflectance spectra were calculated and those spectra obtained from the numerical inversion showed better agreement with the experimental reflection spectra for both the cryastalline phase and an amorphous phase. Finally, the thin $Ge_2Se_2Te_5$ film which has the optimum thickness of 26 nm as the medium for optical recording was also analyzed and the quantitative result of the film thickness and the surface microroughness has been reported.

  • PDF

Polymer Optical Microring Resonator Using Nanoimprint Technique (나노 임프린트 기술을 이용한 폴리머 링 광공진기)

  • Kim, Do-Hwan;Im, Jung-Gyu;Lee, Sang-Shin;Ahn, Seh-Won;Lee, Ki-Dong
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.384-391
    • /
    • 2005
  • A polymer optical microring resonator, which is laterally coupled to a straight bus waveguide, has been proposed and demonstrated using a nanoimprint technique. The propagation loss of the ring waveguide and the optical power coupling between the ring and bus waveguides was calculated by using a beam propagation method, then the dependence of the device performance on them was investigated using a transfer matrix method. We have especially introduced an imprint stamp incorporating a smoothing buffer layer made of a silicon nitride thin film. This layer played an efficient role in improving the sidewall roughness of the waveguide pattern engraved on the stamp and thus reducing the scattering loss. As a result the overall Q factor of the resonator was greatly increased. Also it reduced the gap between the ring and bus waveguides effectively to enhance the coupling between them, without relying on the direct writing method based on an e-beam writer. As for the achieved device performance at the wavelength of 1550 nm, the quality factor, the extinction ratio, and the free spectral range were ~103800, ~11 dB, and 1.16 m, respectively.

Guided-mode Resonances in Periodic Surface Structures Induced on Si Thin Film by a Laser (레이저에 의해 생성된 Si 박막의 주기적 표면 구조에서의 도파모드 공진 연구)

  • Ji Hyuk Lee;Yoon Joo Lee;Hyun Hong;Eun Sol Cho;Ji Young Park;Ju Hyeon Kim;Min Jin Kang;Eui Sun Hwang;Byoung-Ho Cheong
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.241-247
    • /
    • 2023
  • We examine the spectral characteristics of laser-induced periodic surface structures (LIPSSs) formed on an amorphous silicon film irradiated by a 355-nm nanosecond laser. A Gaussian beam with a diameter of 196 ㎛ is used to perform a two-dimensional raster scan. The laser's pulse number is varied from 190 to 280, and its intensity is adjusted within 100-130 mJ/cm2. LIPSSs with a periodicity of approximately 330 nm form on the surface of the Si film, aligned perpendicular to the laser's polarization. Transmission spectra of the samples show dips around 700 nm for transverse electric polarization and around 500 nm for transverse magnetic polarization. The features are investigated with a one-dimensional-grating model using a rigorous coupled-wave analysis. Simulations confirm that the observed dips are due to the resonant modes, depending on the polarization.